wav2vec2-large-xls-r-300m-en-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the librispeech_asr dataset. It achieves the following results on the evaluation set:
- Loss: 0.1169
- Wer: 0.0597
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.6951 | 0.22 | 100 | 3.1606 | 1.0 |
2.924 | 0.45 | 200 | 2.9297 | 1.0 |
2.5328 | 0.67 | 300 | 1.4339 | 0.8953 |
0.8611 | 0.9 | 400 | 0.6104 | 0.5306 |
0.3714 | 1.12 | 500 | 0.2497 | 0.2150 |
0.2015 | 1.35 | 600 | 0.1853 | 0.1615 |
0.1593 | 1.57 | 700 | 0.1613 | 0.1366 |
0.1436 | 1.79 | 800 | 0.1503 | 0.1311 |
0.1249 | 2.02 | 900 | 0.1374 | 0.1038 |
0.0936 | 2.24 | 1000 | 0.1328 | 0.1016 |
0.0896 | 2.47 | 1100 | 0.1234 | 0.0942 |
0.0872 | 2.69 | 1200 | 0.1148 | 0.0922 |
0.0859 | 2.91 | 1300 | 0.1140 | 0.0892 |
0.0733 | 3.14 | 1400 | 0.1134 | 0.0839 |
0.0633 | 3.36 | 1500 | 0.1085 | 0.0802 |
0.0567 | 3.59 | 1600 | 0.1103 | 0.0807 |
0.0604 | 3.81 | 1700 | 0.1088 | 0.0809 |
0.0586 | 4.04 | 1800 | 0.1113 | 0.0804 |
0.0516 | 4.26 | 1900 | 0.1123 | 0.0808 |
0.055 | 4.48 | 2000 | 0.1130 | 0.0764 |
0.0568 | 4.71 | 2100 | 0.1128 | 0.0807 |
0.0529 | 4.93 | 2200 | 0.1009 | 0.0727 |
0.0455 | 5.16 | 2300 | 0.1050 | 0.0726 |
0.0443 | 5.38 | 2400 | 0.1078 | 0.0720 |
0.0434 | 5.61 | 2500 | 0.1027 | 0.0702 |
0.0418 | 5.83 | 2600 | 0.1009 | 0.0693 |
0.0381 | 6.05 | 2700 | 0.1079 | 0.0689 |
0.0344 | 6.28 | 2800 | 0.1062 | 0.0678 |
0.0353 | 6.5 | 2900 | 0.1054 | 0.0682 |
0.0342 | 6.73 | 3000 | 0.1030 | 0.0661 |
0.0329 | 6.95 | 3100 | 0.1021 | 0.0659 |
0.0316 | 7.17 | 3200 | 0.1085 | 0.0667 |
0.0275 | 7.4 | 3300 | 0.1089 | 0.0645 |
0.0275 | 7.62 | 3400 | 0.1064 | 0.0645 |
0.0268 | 7.85 | 3500 | 0.1109 | 0.0639 |
0.0259 | 8.07 | 3600 | 0.1123 | 0.0636 |
0.024 | 8.3 | 3700 | 0.1169 | 0.0631 |
0.0225 | 8.52 | 3800 | 0.1170 | 0.0617 |
0.0229 | 8.74 | 3900 | 0.1153 | 0.0614 |
0.0214 | 8.97 | 4000 | 0.1143 | 0.0610 |
0.02 | 9.19 | 4100 | 0.1162 | 0.0606 |
0.0194 | 9.42 | 4200 | 0.1173 | 0.0603 |
0.0193 | 9.64 | 4300 | 0.1184 | 0.0601 |
0.0177 | 9.87 | 4400 | 0.1169 | 0.0597 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
- Downloads last month
- 115
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.