Edit model card

Visualize in Weights & Biases Visualize in Weights & Biases

6e-5_4000evaltest

This model was trained from scratch on the ami dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1036
  • Wer: 0.2644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 7.5758 250 6.5111 1.0
12.7243 15.1515 500 3.3744 1.0
12.7243 22.7273 750 3.0806 1.0
3.3334 30.3030 1000 3.2656 1.0
3.3334 37.8788 1250 2.9244 1.0
2.5277 45.4545 1500 1.2766 0.4895
2.5277 53.0303 1750 1.3037 0.3171
1.0439 60.6061 2000 1.0592 0.2950
1.0439 68.1818 2250 1.0711 0.2896
0.7466 75.7576 2500 1.0562 0.2809
0.7466 83.3333 2750 1.0679 0.2822
0.5899 90.9091 3000 1.1271 0.2734
0.5899 98.4848 3250 1.1434 0.2692
0.4165 106.0606 3500 1.0480 0.2683
0.4165 113.6364 3750 1.1392 0.2651
0.493 121.2121 4000 1.1036 0.2644

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train jadorantes2/6e-5_4000evaltest

Evaluation results