spad / geometry.py
jadechoghari's picture
Create geometry.py
80f129f verified
raw
history blame
15.8 kB
import numpy as np
import torch
import time
import imageio
from skimage.draw import line
from easydict import EasyDict as edict
from pytorch3d.renderer import NDCMultinomialRaysampler, ray_bundle_to_ray_points
from pytorch3d.utils import cameras_from_opencv_projection
from einops import rearrange
from torch.nn import functional as F
# cache for fast epipolar line drawing
try:
masks32 = np.load("/fs01/home/yashkant/spad-code/cache/masks32.npy", allow_pickle=True)
except:
print(f"failed to load cache for fast epipolar line drawing, this does not affect final results")
masks32 = None
def compute_epipolar_mask(src_frame, tgt_frame, imh, imw, dialate_mask=True, debug_depth=False, visualize_mask=False):
"""
src_frame: source frame containing camera
tgt_frame: target frame containing camera
debug_depth: if True, uses depth map to compute epipolar lines on target image (debugging)
visualize_mask: if True, saves a batched attention masks (debugging)
"""
# generates raybundle using camera intrinsics and extrinsics
src_ray_bundle = NDCMultinomialRaysampler(
image_width=imw,
image_height=imh,
n_pts_per_ray=1,
min_depth=1.0,
max_depth=1.0,
)(src_frame.camera)
src_depth = getattr(src_frame, "depth_map", None)
if debug_depth and src_depth is not None:
src_depth = src_depth[:, 0, ..., None]
src_depth[src_depth >= 100] = 100 # clip depth
else:
# get points in world space (at fixed depth)
src_depth = 3.5 * torch.ones((1, imh, imw, 1), dtype=torch.float32, device=src_frame.camera.device)
pts_world = ray_bundle_to_ray_points(
src_ray_bundle._replace(lengths=src_depth)
).squeeze(-2)
# print(f"world points bounds: {pts_world.reshape(-1,3).min(dim=0)[0]} to {pts_world.reshape(-1,3).max(dim=0)[0]}")
rays_time = time.time()
# move source points to target screen space
tgt_pts_screen = tgt_frame.camera.transform_points_screen(pts_world.squeeze(), image_size=(imh, imw))
# move source camera center to target screen space
src_center_tgt_screen = tgt_frame.camera.transform_points_screen(src_frame.camera.get_camera_center(), image_size=(imh, imw)).squeeze()
# build epipolar mask (draw lines from source camera center to source points in target screen space)
# start: source camera center, end: source points in target screen space
# get flow of points
center_to_pts_flow = tgt_pts_screen[...,:2] - src_center_tgt_screen[...,:2]
# normalize flow
center_to_pts_flow = center_to_pts_flow / center_to_pts_flow.norm(dim=-1, keepdim=True)
# get slope and intercept of lines
slope = center_to_pts_flow[:,:,0:1] / center_to_pts_flow[:,:,1:2]
intercept = tgt_pts_screen[:,:, 0:1] - slope * tgt_pts_screen[:,:, 1:2]
# find intersection of lines with tgt screen (x = 0, x = imw, y = 0, y = imh)
left = slope * 0 + intercept
left_sane = (left <= imh) & (0 <= left)
left = torch.cat([left, torch.zeros_like(left)], dim=-1)
right = slope * imw + intercept
right_sane = (right <= imh) & (0 <= right)
right = torch.cat([right, torch.ones_like(right) * imw], dim=-1)
top = (0 - intercept) / slope
top_sane = (top <= imw) & (0 <= top)
top = torch.cat([torch.zeros_like(top), top], dim=-1)
bottom = (imh - intercept) / slope
bottom_sane = (bottom <= imw) & (0 <= bottom)
bottom = torch.cat([torch.ones_like(bottom) * imh, bottom], dim=-1)
# find intersection of lines
points_one = torch.zeros_like(left)
points_two = torch.zeros_like(left)
# collect points from [left, right, bottom, top] in sequence
points_one = torch.where(left_sane.repeat(1,1,2), left, points_one)
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(right_sane.repeat(1,1,2) & points_one_zero, right, points_one)
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(bottom_sane.repeat(1,1,2) & points_one_zero, bottom, points_one)
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(top_sane.repeat(1,1,2) & points_one_zero, top, points_one)
# collect points from [top, bottom, right, left] in sequence (opposite)
points_two = torch.where(top_sane.repeat(1,1,2), top, points_two)
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_two = torch.where(bottom_sane.repeat(1,1,2) & points_two_zero, bottom, points_two)
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_two = torch.where(right_sane.repeat(1,1,2) & points_two_zero, right, points_two)
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_two = torch.where(left_sane.repeat(1,1,2) & points_two_zero, left, points_two)
# if source point lies inside target screen (find only one intersection)
if (imh >= src_center_tgt_screen[0] >= 0) and (imw >= src_center_tgt_screen[1] >= 0):
points_one_flow = points_one - src_center_tgt_screen[:2]
points_one_flow_direction = (points_one_flow > 0)
points_two_flow = points_two - src_center_tgt_screen[:2]
points_two_flow_direction = (points_two_flow > 0)
orig_flow_direction = (center_to_pts_flow > 0)
# if flow direction is same as orig flow direction, pick points_one, else points_two
points_one_alinged = (points_one_flow_direction == orig_flow_direction).all(dim=-1).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(points_one_alinged, points_one, points_two)
# points two is source camera center
points_two = points_two * 0 + src_center_tgt_screen[:2]
# if debug terminate with depth
if debug_depth:
# remove points that are out of bounds (in target screen space)
tgt_pts_screen_mask = (tgt_pts_screen[...,:2] < 0) | (tgt_pts_screen[...,:2] > imh)
tgt_pts_screen_mask = ~tgt_pts_screen_mask.any(dim=-1, keepdim=True)
depth_dist = torch.norm(src_center_tgt_screen[:2] - tgt_pts_screen[...,:2], dim=-1, keepdim=True)
points_one_dist = torch.norm(src_center_tgt_screen[:2] - points_one, dim=-1, keepdim=True)
points_two_dist = torch.norm(src_center_tgt_screen[:2] - points_two, dim=-1, keepdim=True)
# replace where reprojected point is closer to source camera on target screen
points_one = torch.where((depth_dist < points_one_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_one)
points_two = torch.where((depth_dist < points_two_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_two)
# build epipolar mask
attention_mask = torch.zeros((imh * imw, imh, imw), dtype=torch.bool, device=src_frame.camera.device)
# quantize points to pixel indices
points_one = (points_one - 0.5).reshape(-1,2).long().numpy()
points_two = (points_two - 0.5).reshape(-1,2).long().numpy()
# cache only supports 32x32 epipolar mask with 3x3 dilation
if not (imh == 32 and imw == 32) or not dialate_mask or masks32 is None:
# iterate over points_one and points_two together and draw lines
for idx, (p1, p2) in enumerate(zip(points_one, points_two)):
# skip out of bounds points
if p1.sum() == 0 and p2.sum() == 0:
continue
if not dialate_mask:
# draw line from p1 to p2
rr, cc = line(int(p1[1]), int(p1[0]), int(p2[1]), int(p2[0]), use_cache=False)
rr, cc = rr.astype(np.int32), cc.astype(np.int32)
attention_mask[idx, rr, cc] = True
else:
# draw lines with mask dilation (from all neighbors of p1 to neighbors of p2)
rrs, ccs = [], []
for dx, dy in [(0,0), (0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1)]: # 8 neighbors
_p1 = [min(max(p1[0] + dy, 0), imh - 1), min(max(p1[1] + dx, 0), imw - 1)]
_p2 = [min(max(p2[0] + dy, 0), imh - 1), min(max(p2[1] + dx, 0), imw - 1)]
rr, cc = line(int(_p1[1]), int(_p1[0]), int(_p2[1]), int(_p2[0]))
rrs.append(rr); ccs.append(cc)
rrs, ccs = np.concatenate(rrs), np.concatenate(ccs)
attention_mask[idx, rrs.astype(np.int32), ccs.astype(np.int32)] = True
else:
points_one_y, points_one_x = points_one[:,0], points_one[:,1]
points_two_y, points_two_x = points_two[:,0], points_two[:,1]
attention_mask = masks32[points_one_y, points_one_x, points_two_y, points_two_x]
attention_mask = torch.from_numpy(attention_mask).to(src_frame.camera.device)
# reshape to (imh, imw, imh, imw)
attention_mask = attention_mask.reshape(imh * imw, imh * imw)
# stores flattened 2D attention mask
if visualize_mask:
attention_mask = attention_mask.reshape(imh * imw, imh * imw)
am_img = (attention_mask.squeeze().unsqueeze(-1).repeat(1,1,3).float().numpy() * 255).astype(np.uint8)
imageio.imsave("data/visuals/epipolar_masks/batched_mask.png", am_img)
return attention_mask
def get_opencv_from_blender(matrix_world, fov, image_size):
# convert matrix_world to opencv format extrinsics
opencv_world_to_cam = matrix_world.inverse()
opencv_world_to_cam[1, :] *= -1
opencv_world_to_cam[2, :] *= -1
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3]
R, T = R.unsqueeze(0), T.unsqueeze(0)
# convert fov to opencv format intrinsics
focal = 1 / np.tan(fov / 2)
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32)
opencv_cam_matrix = torch.from_numpy(intrinsics).unsqueeze(0).float()
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2])
opencv_cam_matrix[:, [0,1], [0,1]] *= image_size / 2
return R, T, opencv_cam_matrix
def compute_plucker_embed(frame, imw, imh):
""" Computes Plucker coordinates for a Pytorch3D camera. """
# get camera center
cam_pos = frame.camera.get_camera_center()
# get ray bundle
src_ray_bundle = NDCMultinomialRaysampler(
image_width=imw,
image_height=imh,
n_pts_per_ray=1,
min_depth=1.0,
max_depth=1.0,
)(frame.camera)
# get ray directions
ray_dirs = F.normalize(src_ray_bundle.directions, dim=-1)
# get plucker coordinates
cross = torch.cross(cam_pos[:,None,None,:], ray_dirs, dim=-1)
plucker = torch.cat((ray_dirs, cross), dim=-1)
plucker = plucker.permute(0, 3, 1, 2)
return plucker # (B, 6, H, W, )
def cartesian_to_spherical(xyz):
xy = xyz[:,0]**2 + xyz[:,1]**2
z = np.sqrt(xy + xyz[:,2]**2)
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from z-axis down
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
return np.stack([theta, azimuth, z], axis=-1)
def spherical_to_cartesian(spherical_coords):
# convert from spherical to cartesian coordinates
theta, azimuth, radius = spherical_coords.T
x = radius * np.sin(theta) * np.cos(azimuth)
y = radius * np.sin(theta) * np.sin(azimuth)
z = radius * np.cos(theta)
return np.stack([x, y, z], axis=-1)
def look_at(eye, center, up):
# Create a normalized direction vector from eye to center
f = np.array(center) - np.array(eye)
f /= np.linalg.norm(f)
# Create a normalized right vector
up_norm = np.array(up) / np.linalg.norm(up)
s = np.cross(f, up_norm)
s /= np.linalg.norm(s)
# Recompute the up vector
u = np.cross(s, f)
# Create rotation matrix R
R = np.array([[s[0], s[1], s[2]],
[u[0], u[1], u[2]],
[-f[0], -f[1], -f[2]]])
# Create translation vector T
T = -np.dot(R, np.array(eye))
return R, T
def get_blender_from_spherical(elevation, azimuth):
""" Generates blender camera from spherical coordinates. """
cartesian_coords = spherical_to_cartesian(np.array([[elevation, azimuth, 3.5]]))
# get camera rotation
center = np.array([0, 0, 0])
eye = cartesian_coords[0]
up = np.array([0, 0, 1])
R, T = look_at(eye, center, up)
R = R.T; T = -np.dot(R, T)
RT = np.concatenate([R, T.reshape(3,1)], axis=-1)
blender_cam = torch.from_numpy(RT).float()
blender_cam = torch.cat([blender_cam, torch.tensor([[0, 0, 0, 1]])], axis=0)
return blender_cam
def get_mask_and_plucker(src_frame, tgt_frame, image_size, dialate_mask=True, debug_depth=False, visualize_mask=False):
""" Given a pair of source and target frames (blender outputs), returns the epipolar attention masks and plucker embeddings."""
# get pytorch3d frames (blender to opencv, then opencv to pytorch3d)
src_R, src_T, src_intrinsics = get_opencv_from_blender(src_frame["camera"], src_frame["fov"], image_size)
src_camera_pytorch3d = cameras_from_opencv_projection(src_R, src_T, src_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0))
src_frame.update({"camera": src_camera_pytorch3d})
tgt_R, tgt_T, tgt_intrinsics = get_opencv_from_blender(tgt_frame["camera"], tgt_frame["fov"], image_size)
tgt_camera_pytorch3d = cameras_from_opencv_projection(tgt_R, tgt_T, tgt_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0))
tgt_frame.update({"camera": tgt_camera_pytorch3d})
# compute epipolar masks
image_height, image_width = image_size, image_size
src_mask = compute_epipolar_mask(src_frame, tgt_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask)
tgt_mask = compute_epipolar_mask(tgt_frame, src_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask)
# compute plucker coordinates
src_plucker = compute_plucker_embed(src_frame, image_height, image_width).squeeze()
tgt_plucker = compute_plucker_embed(tgt_frame, image_height, image_width).squeeze()
return src_mask, tgt_mask, src_plucker, tgt_plucker
def get_batch_from_spherical(elevations, azimuths, fov=0.702769935131073, image_size=256):
"""Given a list of elevations and azimuths, generates cameras, computes epipolar masks and plucker embeddings and organizes them as a batch."""
num_views = len(elevations)
latent_size = image_size // 8
assert len(elevations) == len(azimuths)
# intialize all epipolar masks to ones (i.e. all pixels are considered)
batch_attention_masks = torch.ones(num_views, num_views, latent_size ** 2, latent_size ** 2, dtype=torch.bool)
plucker_embeds = [None for _ in range(num_views)]
# compute pairwise mask and plucker
for i, icam in enumerate(zip(elevations, azimuths)):
for j, jcam in enumerate(zip(elevations, azimuths)):
if i == j: continue
first_frame = edict({"fov": fov}); second_frame = edict({"fov": fov})
first_frame["camera"] = get_blender_from_spherical(elevation=icam[0], azimuth=icam[1])
second_frame["camera"] = get_blender_from_spherical(elevation=jcam[0], azimuth=jcam[1])
first_mask, second_mask, first_plucker, second_plucker = get_mask_and_plucker(first_frame, second_frame, latent_size, dialate_mask=True)
batch_attention_masks[i, j], batch_attention_masks[j, i] = first_mask, second_mask
plucker_embeds[i], plucker_embeds[j] = first_plucker, second_plucker
# organize as batch
batch = {}
batch_attention_masks = rearrange(batch_attention_masks, 'b1 b2 h w -> (b1 h) (b2 w)')
batch["epi_constraint_masks"] = batch_attention_masks
batch["plucker_embeds"] = torch.stack(plucker_embeds)
return batch