|
import numpy as np |
|
import torch |
|
import time |
|
import imageio |
|
from skimage.draw import line |
|
from easydict import EasyDict as edict |
|
|
|
from pytorch3d.renderer import NDCMultinomialRaysampler, ray_bundle_to_ray_points |
|
from pytorch3d.utils import cameras_from_opencv_projection |
|
from einops import rearrange |
|
|
|
from torch.nn import functional as F |
|
|
|
|
|
try: |
|
masks32 = np.load("/fs01/home/yashkant/spad-code/cache/masks32.npy", allow_pickle=True) |
|
except: |
|
print(f"failed to load cache for fast epipolar line drawing, this does not affect final results") |
|
masks32 = None |
|
|
|
|
|
def compute_epipolar_mask(src_frame, tgt_frame, imh, imw, dialate_mask=True, debug_depth=False, visualize_mask=False): |
|
""" |
|
src_frame: source frame containing camera |
|
tgt_frame: target frame containing camera |
|
debug_depth: if True, uses depth map to compute epipolar lines on target image (debugging) |
|
visualize_mask: if True, saves a batched attention masks (debugging) |
|
""" |
|
|
|
|
|
src_ray_bundle = NDCMultinomialRaysampler( |
|
image_width=imw, |
|
image_height=imh, |
|
n_pts_per_ray=1, |
|
min_depth=1.0, |
|
max_depth=1.0, |
|
)(src_frame.camera) |
|
|
|
src_depth = getattr(src_frame, "depth_map", None) |
|
if debug_depth and src_depth is not None: |
|
src_depth = src_depth[:, 0, ..., None] |
|
src_depth[src_depth >= 100] = 100 |
|
else: |
|
|
|
src_depth = 3.5 * torch.ones((1, imh, imw, 1), dtype=torch.float32, device=src_frame.camera.device) |
|
|
|
pts_world = ray_bundle_to_ray_points( |
|
src_ray_bundle._replace(lengths=src_depth) |
|
).squeeze(-2) |
|
|
|
rays_time = time.time() |
|
|
|
|
|
tgt_pts_screen = tgt_frame.camera.transform_points_screen(pts_world.squeeze(), image_size=(imh, imw)) |
|
|
|
|
|
src_center_tgt_screen = tgt_frame.camera.transform_points_screen(src_frame.camera.get_camera_center(), image_size=(imh, imw)).squeeze() |
|
|
|
|
|
|
|
|
|
|
|
center_to_pts_flow = tgt_pts_screen[...,:2] - src_center_tgt_screen[...,:2] |
|
|
|
|
|
center_to_pts_flow = center_to_pts_flow / center_to_pts_flow.norm(dim=-1, keepdim=True) |
|
|
|
|
|
slope = center_to_pts_flow[:,:,0:1] / center_to_pts_flow[:,:,1:2] |
|
intercept = tgt_pts_screen[:,:, 0:1] - slope * tgt_pts_screen[:,:, 1:2] |
|
|
|
|
|
left = slope * 0 + intercept |
|
left_sane = (left <= imh) & (0 <= left) |
|
left = torch.cat([left, torch.zeros_like(left)], dim=-1) |
|
|
|
right = slope * imw + intercept |
|
right_sane = (right <= imh) & (0 <= right) |
|
right = torch.cat([right, torch.ones_like(right) * imw], dim=-1) |
|
|
|
top = (0 - intercept) / slope |
|
top_sane = (top <= imw) & (0 <= top) |
|
top = torch.cat([torch.zeros_like(top), top], dim=-1) |
|
|
|
bottom = (imh - intercept) / slope |
|
bottom_sane = (bottom <= imw) & (0 <= bottom) |
|
bottom = torch.cat([torch.ones_like(bottom) * imh, bottom], dim=-1) |
|
|
|
|
|
points_one = torch.zeros_like(left) |
|
points_two = torch.zeros_like(left) |
|
|
|
|
|
points_one = torch.where(left_sane.repeat(1,1,2), left, points_one) |
|
|
|
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2) |
|
points_one = torch.where(right_sane.repeat(1,1,2) & points_one_zero, right, points_one) |
|
|
|
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2) |
|
points_one = torch.where(bottom_sane.repeat(1,1,2) & points_one_zero, bottom, points_one) |
|
|
|
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2) |
|
points_one = torch.where(top_sane.repeat(1,1,2) & points_one_zero, top, points_one) |
|
|
|
|
|
points_two = torch.where(top_sane.repeat(1,1,2), top, points_two) |
|
|
|
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2) |
|
points_two = torch.where(bottom_sane.repeat(1,1,2) & points_two_zero, bottom, points_two) |
|
|
|
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2) |
|
points_two = torch.where(right_sane.repeat(1,1,2) & points_two_zero, right, points_two) |
|
|
|
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2) |
|
points_two = torch.where(left_sane.repeat(1,1,2) & points_two_zero, left, points_two) |
|
|
|
|
|
if (imh >= src_center_tgt_screen[0] >= 0) and (imw >= src_center_tgt_screen[1] >= 0): |
|
points_one_flow = points_one - src_center_tgt_screen[:2] |
|
points_one_flow_direction = (points_one_flow > 0) |
|
|
|
points_two_flow = points_two - src_center_tgt_screen[:2] |
|
points_two_flow_direction = (points_two_flow > 0) |
|
|
|
orig_flow_direction = (center_to_pts_flow > 0) |
|
|
|
|
|
points_one_alinged = (points_one_flow_direction == orig_flow_direction).all(dim=-1).unsqueeze(-1).repeat(1,1,2) |
|
points_one = torch.where(points_one_alinged, points_one, points_two) |
|
|
|
|
|
points_two = points_two * 0 + src_center_tgt_screen[:2] |
|
|
|
|
|
if debug_depth: |
|
|
|
tgt_pts_screen_mask = (tgt_pts_screen[...,:2] < 0) | (tgt_pts_screen[...,:2] > imh) |
|
tgt_pts_screen_mask = ~tgt_pts_screen_mask.any(dim=-1, keepdim=True) |
|
|
|
depth_dist = torch.norm(src_center_tgt_screen[:2] - tgt_pts_screen[...,:2], dim=-1, keepdim=True) |
|
points_one_dist = torch.norm(src_center_tgt_screen[:2] - points_one, dim=-1, keepdim=True) |
|
points_two_dist = torch.norm(src_center_tgt_screen[:2] - points_two, dim=-1, keepdim=True) |
|
|
|
|
|
points_one = torch.where((depth_dist < points_one_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_one) |
|
points_two = torch.where((depth_dist < points_two_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_two) |
|
|
|
|
|
attention_mask = torch.zeros((imh * imw, imh, imw), dtype=torch.bool, device=src_frame.camera.device) |
|
|
|
|
|
points_one = (points_one - 0.5).reshape(-1,2).long().numpy() |
|
points_two = (points_two - 0.5).reshape(-1,2).long().numpy() |
|
|
|
|
|
if not (imh == 32 and imw == 32) or not dialate_mask or masks32 is None: |
|
|
|
for idx, (p1, p2) in enumerate(zip(points_one, points_two)): |
|
|
|
if p1.sum() == 0 and p2.sum() == 0: |
|
continue |
|
|
|
if not dialate_mask: |
|
|
|
rr, cc = line(int(p1[1]), int(p1[0]), int(p2[1]), int(p2[0]), use_cache=False) |
|
rr, cc = rr.astype(np.int32), cc.astype(np.int32) |
|
attention_mask[idx, rr, cc] = True |
|
else: |
|
|
|
rrs, ccs = [], [] |
|
for dx, dy in [(0,0), (0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1)]: |
|
_p1 = [min(max(p1[0] + dy, 0), imh - 1), min(max(p1[1] + dx, 0), imw - 1)] |
|
_p2 = [min(max(p2[0] + dy, 0), imh - 1), min(max(p2[1] + dx, 0), imw - 1)] |
|
rr, cc = line(int(_p1[1]), int(_p1[0]), int(_p2[1]), int(_p2[0])) |
|
rrs.append(rr); ccs.append(cc) |
|
rrs, ccs = np.concatenate(rrs), np.concatenate(ccs) |
|
attention_mask[idx, rrs.astype(np.int32), ccs.astype(np.int32)] = True |
|
else: |
|
points_one_y, points_one_x = points_one[:,0], points_one[:,1] |
|
points_two_y, points_two_x = points_two[:,0], points_two[:,1] |
|
attention_mask = masks32[points_one_y, points_one_x, points_two_y, points_two_x] |
|
attention_mask = torch.from_numpy(attention_mask).to(src_frame.camera.device) |
|
|
|
|
|
attention_mask = attention_mask.reshape(imh * imw, imh * imw) |
|
|
|
|
|
if visualize_mask: |
|
attention_mask = attention_mask.reshape(imh * imw, imh * imw) |
|
am_img = (attention_mask.squeeze().unsqueeze(-1).repeat(1,1,3).float().numpy() * 255).astype(np.uint8) |
|
imageio.imsave("data/visuals/epipolar_masks/batched_mask.png", am_img) |
|
|
|
return attention_mask |
|
|
|
|
|
def get_opencv_from_blender(matrix_world, fov, image_size): |
|
|
|
opencv_world_to_cam = matrix_world.inverse() |
|
opencv_world_to_cam[1, :] *= -1 |
|
opencv_world_to_cam[2, :] *= -1 |
|
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3] |
|
R, T = R.unsqueeze(0), T.unsqueeze(0) |
|
|
|
|
|
focal = 1 / np.tan(fov / 2) |
|
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32) |
|
opencv_cam_matrix = torch.from_numpy(intrinsics).unsqueeze(0).float() |
|
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2]) |
|
opencv_cam_matrix[:, [0,1], [0,1]] *= image_size / 2 |
|
|
|
return R, T, opencv_cam_matrix |
|
|
|
|
|
def compute_plucker_embed(frame, imw, imh): |
|
""" Computes Plucker coordinates for a Pytorch3D camera. """ |
|
|
|
|
|
cam_pos = frame.camera.get_camera_center() |
|
|
|
|
|
src_ray_bundle = NDCMultinomialRaysampler( |
|
image_width=imw, |
|
image_height=imh, |
|
n_pts_per_ray=1, |
|
min_depth=1.0, |
|
max_depth=1.0, |
|
)(frame.camera) |
|
|
|
|
|
ray_dirs = F.normalize(src_ray_bundle.directions, dim=-1) |
|
|
|
|
|
cross = torch.cross(cam_pos[:,None,None,:], ray_dirs, dim=-1) |
|
plucker = torch.cat((ray_dirs, cross), dim=-1) |
|
plucker = plucker.permute(0, 3, 1, 2) |
|
|
|
return plucker |
|
|
|
|
|
def cartesian_to_spherical(xyz): |
|
xy = xyz[:,0]**2 + xyz[:,1]**2 |
|
z = np.sqrt(xy + xyz[:,2]**2) |
|
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) |
|
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) |
|
return np.stack([theta, azimuth, z], axis=-1) |
|
|
|
|
|
def spherical_to_cartesian(spherical_coords): |
|
|
|
theta, azimuth, radius = spherical_coords.T |
|
x = radius * np.sin(theta) * np.cos(azimuth) |
|
y = radius * np.sin(theta) * np.sin(azimuth) |
|
z = radius * np.cos(theta) |
|
return np.stack([x, y, z], axis=-1) |
|
|
|
|
|
def look_at(eye, center, up): |
|
|
|
f = np.array(center) - np.array(eye) |
|
f /= np.linalg.norm(f) |
|
|
|
|
|
up_norm = np.array(up) / np.linalg.norm(up) |
|
s = np.cross(f, up_norm) |
|
s /= np.linalg.norm(s) |
|
|
|
|
|
u = np.cross(s, f) |
|
|
|
|
|
R = np.array([[s[0], s[1], s[2]], |
|
[u[0], u[1], u[2]], |
|
[-f[0], -f[1], -f[2]]]) |
|
|
|
|
|
T = -np.dot(R, np.array(eye)) |
|
|
|
return R, T |
|
|
|
|
|
def get_blender_from_spherical(elevation, azimuth): |
|
""" Generates blender camera from spherical coordinates. """ |
|
|
|
cartesian_coords = spherical_to_cartesian(np.array([[elevation, azimuth, 3.5]])) |
|
|
|
|
|
center = np.array([0, 0, 0]) |
|
eye = cartesian_coords[0] |
|
up = np.array([0, 0, 1]) |
|
|
|
R, T = look_at(eye, center, up) |
|
R = R.T; T = -np.dot(R, T) |
|
RT = np.concatenate([R, T.reshape(3,1)], axis=-1) |
|
|
|
blender_cam = torch.from_numpy(RT).float() |
|
blender_cam = torch.cat([blender_cam, torch.tensor([[0, 0, 0, 1]])], axis=0) |
|
return blender_cam |
|
|
|
|
|
def get_mask_and_plucker(src_frame, tgt_frame, image_size, dialate_mask=True, debug_depth=False, visualize_mask=False): |
|
""" Given a pair of source and target frames (blender outputs), returns the epipolar attention masks and plucker embeddings.""" |
|
|
|
|
|
src_R, src_T, src_intrinsics = get_opencv_from_blender(src_frame["camera"], src_frame["fov"], image_size) |
|
src_camera_pytorch3d = cameras_from_opencv_projection(src_R, src_T, src_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0)) |
|
src_frame.update({"camera": src_camera_pytorch3d}) |
|
|
|
tgt_R, tgt_T, tgt_intrinsics = get_opencv_from_blender(tgt_frame["camera"], tgt_frame["fov"], image_size) |
|
tgt_camera_pytorch3d = cameras_from_opencv_projection(tgt_R, tgt_T, tgt_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0)) |
|
tgt_frame.update({"camera": tgt_camera_pytorch3d}) |
|
|
|
|
|
image_height, image_width = image_size, image_size |
|
src_mask = compute_epipolar_mask(src_frame, tgt_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask) |
|
tgt_mask = compute_epipolar_mask(tgt_frame, src_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask) |
|
|
|
|
|
src_plucker = compute_plucker_embed(src_frame, image_height, image_width).squeeze() |
|
tgt_plucker = compute_plucker_embed(tgt_frame, image_height, image_width).squeeze() |
|
|
|
return src_mask, tgt_mask, src_plucker, tgt_plucker |
|
|
|
|
|
def get_batch_from_spherical(elevations, azimuths, fov=0.702769935131073, image_size=256): |
|
"""Given a list of elevations and azimuths, generates cameras, computes epipolar masks and plucker embeddings and organizes them as a batch.""" |
|
|
|
num_views = len(elevations) |
|
latent_size = image_size // 8 |
|
assert len(elevations) == len(azimuths) |
|
|
|
|
|
batch_attention_masks = torch.ones(num_views, num_views, latent_size ** 2, latent_size ** 2, dtype=torch.bool) |
|
plucker_embeds = [None for _ in range(num_views)] |
|
|
|
|
|
for i, icam in enumerate(zip(elevations, azimuths)): |
|
for j, jcam in enumerate(zip(elevations, azimuths)): |
|
if i == j: continue |
|
|
|
first_frame = edict({"fov": fov}); second_frame = edict({"fov": fov}) |
|
first_frame["camera"] = get_blender_from_spherical(elevation=icam[0], azimuth=icam[1]) |
|
second_frame["camera"] = get_blender_from_spherical(elevation=jcam[0], azimuth=jcam[1]) |
|
first_mask, second_mask, first_plucker, second_plucker = get_mask_and_plucker(first_frame, second_frame, latent_size, dialate_mask=True) |
|
|
|
batch_attention_masks[i, j], batch_attention_masks[j, i] = first_mask, second_mask |
|
plucker_embeds[i], plucker_embeds[j] = first_plucker, second_plucker |
|
|
|
|
|
batch = {} |
|
batch_attention_masks = rearrange(batch_attention_masks, 'b1 b2 h w -> (b1 h) (b2 w)') |
|
batch["epi_constraint_masks"] = batch_attention_masks |
|
batch["plucker_embeds"] = torch.stack(plucker_embeds) |
|
|
|
return batch |
|
|