File size: 15,791 Bytes
80f129f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import numpy as np
import torch
import time
import imageio
from skimage.draw import line
from easydict import EasyDict as edict
from pytorch3d.renderer import NDCMultinomialRaysampler, ray_bundle_to_ray_points
from pytorch3d.utils import cameras_from_opencv_projection
from einops import rearrange
from torch.nn import functional as F
# cache for fast epipolar line drawing
try:
masks32 = np.load("/fs01/home/yashkant/spad-code/cache/masks32.npy", allow_pickle=True)
except:
print(f"failed to load cache for fast epipolar line drawing, this does not affect final results")
masks32 = None
def compute_epipolar_mask(src_frame, tgt_frame, imh, imw, dialate_mask=True, debug_depth=False, visualize_mask=False):
"""
src_frame: source frame containing camera
tgt_frame: target frame containing camera
debug_depth: if True, uses depth map to compute epipolar lines on target image (debugging)
visualize_mask: if True, saves a batched attention masks (debugging)
"""
# generates raybundle using camera intrinsics and extrinsics
src_ray_bundle = NDCMultinomialRaysampler(
image_width=imw,
image_height=imh,
n_pts_per_ray=1,
min_depth=1.0,
max_depth=1.0,
)(src_frame.camera)
src_depth = getattr(src_frame, "depth_map", None)
if debug_depth and src_depth is not None:
src_depth = src_depth[:, 0, ..., None]
src_depth[src_depth >= 100] = 100 # clip depth
else:
# get points in world space (at fixed depth)
src_depth = 3.5 * torch.ones((1, imh, imw, 1), dtype=torch.float32, device=src_frame.camera.device)
pts_world = ray_bundle_to_ray_points(
src_ray_bundle._replace(lengths=src_depth)
).squeeze(-2)
# print(f"world points bounds: {pts_world.reshape(-1,3).min(dim=0)[0]} to {pts_world.reshape(-1,3).max(dim=0)[0]}")
rays_time = time.time()
# move source points to target screen space
tgt_pts_screen = tgt_frame.camera.transform_points_screen(pts_world.squeeze(), image_size=(imh, imw))
# move source camera center to target screen space
src_center_tgt_screen = tgt_frame.camera.transform_points_screen(src_frame.camera.get_camera_center(), image_size=(imh, imw)).squeeze()
# build epipolar mask (draw lines from source camera center to source points in target screen space)
# start: source camera center, end: source points in target screen space
# get flow of points
center_to_pts_flow = tgt_pts_screen[...,:2] - src_center_tgt_screen[...,:2]
# normalize flow
center_to_pts_flow = center_to_pts_flow / center_to_pts_flow.norm(dim=-1, keepdim=True)
# get slope and intercept of lines
slope = center_to_pts_flow[:,:,0:1] / center_to_pts_flow[:,:,1:2]
intercept = tgt_pts_screen[:,:, 0:1] - slope * tgt_pts_screen[:,:, 1:2]
# find intersection of lines with tgt screen (x = 0, x = imw, y = 0, y = imh)
left = slope * 0 + intercept
left_sane = (left <= imh) & (0 <= left)
left = torch.cat([left, torch.zeros_like(left)], dim=-1)
right = slope * imw + intercept
right_sane = (right <= imh) & (0 <= right)
right = torch.cat([right, torch.ones_like(right) * imw], dim=-1)
top = (0 - intercept) / slope
top_sane = (top <= imw) & (0 <= top)
top = torch.cat([torch.zeros_like(top), top], dim=-1)
bottom = (imh - intercept) / slope
bottom_sane = (bottom <= imw) & (0 <= bottom)
bottom = torch.cat([torch.ones_like(bottom) * imh, bottom], dim=-1)
# find intersection of lines
points_one = torch.zeros_like(left)
points_two = torch.zeros_like(left)
# collect points from [left, right, bottom, top] in sequence
points_one = torch.where(left_sane.repeat(1,1,2), left, points_one)
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(right_sane.repeat(1,1,2) & points_one_zero, right, points_one)
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(bottom_sane.repeat(1,1,2) & points_one_zero, bottom, points_one)
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(top_sane.repeat(1,1,2) & points_one_zero, top, points_one)
# collect points from [top, bottom, right, left] in sequence (opposite)
points_two = torch.where(top_sane.repeat(1,1,2), top, points_two)
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_two = torch.where(bottom_sane.repeat(1,1,2) & points_two_zero, bottom, points_two)
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_two = torch.where(right_sane.repeat(1,1,2) & points_two_zero, right, points_two)
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
points_two = torch.where(left_sane.repeat(1,1,2) & points_two_zero, left, points_two)
# if source point lies inside target screen (find only one intersection)
if (imh >= src_center_tgt_screen[0] >= 0) and (imw >= src_center_tgt_screen[1] >= 0):
points_one_flow = points_one - src_center_tgt_screen[:2]
points_one_flow_direction = (points_one_flow > 0)
points_two_flow = points_two - src_center_tgt_screen[:2]
points_two_flow_direction = (points_two_flow > 0)
orig_flow_direction = (center_to_pts_flow > 0)
# if flow direction is same as orig flow direction, pick points_one, else points_two
points_one_alinged = (points_one_flow_direction == orig_flow_direction).all(dim=-1).unsqueeze(-1).repeat(1,1,2)
points_one = torch.where(points_one_alinged, points_one, points_two)
# points two is source camera center
points_two = points_two * 0 + src_center_tgt_screen[:2]
# if debug terminate with depth
if debug_depth:
# remove points that are out of bounds (in target screen space)
tgt_pts_screen_mask = (tgt_pts_screen[...,:2] < 0) | (tgt_pts_screen[...,:2] > imh)
tgt_pts_screen_mask = ~tgt_pts_screen_mask.any(dim=-1, keepdim=True)
depth_dist = torch.norm(src_center_tgt_screen[:2] - tgt_pts_screen[...,:2], dim=-1, keepdim=True)
points_one_dist = torch.norm(src_center_tgt_screen[:2] - points_one, dim=-1, keepdim=True)
points_two_dist = torch.norm(src_center_tgt_screen[:2] - points_two, dim=-1, keepdim=True)
# replace where reprojected point is closer to source camera on target screen
points_one = torch.where((depth_dist < points_one_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_one)
points_two = torch.where((depth_dist < points_two_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_two)
# build epipolar mask
attention_mask = torch.zeros((imh * imw, imh, imw), dtype=torch.bool, device=src_frame.camera.device)
# quantize points to pixel indices
points_one = (points_one - 0.5).reshape(-1,2).long().numpy()
points_two = (points_two - 0.5).reshape(-1,2).long().numpy()
# cache only supports 32x32 epipolar mask with 3x3 dilation
if not (imh == 32 and imw == 32) or not dialate_mask or masks32 is None:
# iterate over points_one and points_two together and draw lines
for idx, (p1, p2) in enumerate(zip(points_one, points_two)):
# skip out of bounds points
if p1.sum() == 0 and p2.sum() == 0:
continue
if not dialate_mask:
# draw line from p1 to p2
rr, cc = line(int(p1[1]), int(p1[0]), int(p2[1]), int(p2[0]), use_cache=False)
rr, cc = rr.astype(np.int32), cc.astype(np.int32)
attention_mask[idx, rr, cc] = True
else:
# draw lines with mask dilation (from all neighbors of p1 to neighbors of p2)
rrs, ccs = [], []
for dx, dy in [(0,0), (0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1)]: # 8 neighbors
_p1 = [min(max(p1[0] + dy, 0), imh - 1), min(max(p1[1] + dx, 0), imw - 1)]
_p2 = [min(max(p2[0] + dy, 0), imh - 1), min(max(p2[1] + dx, 0), imw - 1)]
rr, cc = line(int(_p1[1]), int(_p1[0]), int(_p2[1]), int(_p2[0]))
rrs.append(rr); ccs.append(cc)
rrs, ccs = np.concatenate(rrs), np.concatenate(ccs)
attention_mask[idx, rrs.astype(np.int32), ccs.astype(np.int32)] = True
else:
points_one_y, points_one_x = points_one[:,0], points_one[:,1]
points_two_y, points_two_x = points_two[:,0], points_two[:,1]
attention_mask = masks32[points_one_y, points_one_x, points_two_y, points_two_x]
attention_mask = torch.from_numpy(attention_mask).to(src_frame.camera.device)
# reshape to (imh, imw, imh, imw)
attention_mask = attention_mask.reshape(imh * imw, imh * imw)
# stores flattened 2D attention mask
if visualize_mask:
attention_mask = attention_mask.reshape(imh * imw, imh * imw)
am_img = (attention_mask.squeeze().unsqueeze(-1).repeat(1,1,3).float().numpy() * 255).astype(np.uint8)
imageio.imsave("data/visuals/epipolar_masks/batched_mask.png", am_img)
return attention_mask
def get_opencv_from_blender(matrix_world, fov, image_size):
# convert matrix_world to opencv format extrinsics
opencv_world_to_cam = matrix_world.inverse()
opencv_world_to_cam[1, :] *= -1
opencv_world_to_cam[2, :] *= -1
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3]
R, T = R.unsqueeze(0), T.unsqueeze(0)
# convert fov to opencv format intrinsics
focal = 1 / np.tan(fov / 2)
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32)
opencv_cam_matrix = torch.from_numpy(intrinsics).unsqueeze(0).float()
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2])
opencv_cam_matrix[:, [0,1], [0,1]] *= image_size / 2
return R, T, opencv_cam_matrix
def compute_plucker_embed(frame, imw, imh):
""" Computes Plucker coordinates for a Pytorch3D camera. """
# get camera center
cam_pos = frame.camera.get_camera_center()
# get ray bundle
src_ray_bundle = NDCMultinomialRaysampler(
image_width=imw,
image_height=imh,
n_pts_per_ray=1,
min_depth=1.0,
max_depth=1.0,
)(frame.camera)
# get ray directions
ray_dirs = F.normalize(src_ray_bundle.directions, dim=-1)
# get plucker coordinates
cross = torch.cross(cam_pos[:,None,None,:], ray_dirs, dim=-1)
plucker = torch.cat((ray_dirs, cross), dim=-1)
plucker = plucker.permute(0, 3, 1, 2)
return plucker # (B, 6, H, W, )
def cartesian_to_spherical(xyz):
xy = xyz[:,0]**2 + xyz[:,1]**2
z = np.sqrt(xy + xyz[:,2]**2)
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from z-axis down
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
return np.stack([theta, azimuth, z], axis=-1)
def spherical_to_cartesian(spherical_coords):
# convert from spherical to cartesian coordinates
theta, azimuth, radius = spherical_coords.T
x = radius * np.sin(theta) * np.cos(azimuth)
y = radius * np.sin(theta) * np.sin(azimuth)
z = radius * np.cos(theta)
return np.stack([x, y, z], axis=-1)
def look_at(eye, center, up):
# Create a normalized direction vector from eye to center
f = np.array(center) - np.array(eye)
f /= np.linalg.norm(f)
# Create a normalized right vector
up_norm = np.array(up) / np.linalg.norm(up)
s = np.cross(f, up_norm)
s /= np.linalg.norm(s)
# Recompute the up vector
u = np.cross(s, f)
# Create rotation matrix R
R = np.array([[s[0], s[1], s[2]],
[u[0], u[1], u[2]],
[-f[0], -f[1], -f[2]]])
# Create translation vector T
T = -np.dot(R, np.array(eye))
return R, T
def get_blender_from_spherical(elevation, azimuth):
""" Generates blender camera from spherical coordinates. """
cartesian_coords = spherical_to_cartesian(np.array([[elevation, azimuth, 3.5]]))
# get camera rotation
center = np.array([0, 0, 0])
eye = cartesian_coords[0]
up = np.array([0, 0, 1])
R, T = look_at(eye, center, up)
R = R.T; T = -np.dot(R, T)
RT = np.concatenate([R, T.reshape(3,1)], axis=-1)
blender_cam = torch.from_numpy(RT).float()
blender_cam = torch.cat([blender_cam, torch.tensor([[0, 0, 0, 1]])], axis=0)
return blender_cam
def get_mask_and_plucker(src_frame, tgt_frame, image_size, dialate_mask=True, debug_depth=False, visualize_mask=False):
""" Given a pair of source and target frames (blender outputs), returns the epipolar attention masks and plucker embeddings."""
# get pytorch3d frames (blender to opencv, then opencv to pytorch3d)
src_R, src_T, src_intrinsics = get_opencv_from_blender(src_frame["camera"], src_frame["fov"], image_size)
src_camera_pytorch3d = cameras_from_opencv_projection(src_R, src_T, src_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0))
src_frame.update({"camera": src_camera_pytorch3d})
tgt_R, tgt_T, tgt_intrinsics = get_opencv_from_blender(tgt_frame["camera"], tgt_frame["fov"], image_size)
tgt_camera_pytorch3d = cameras_from_opencv_projection(tgt_R, tgt_T, tgt_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0))
tgt_frame.update({"camera": tgt_camera_pytorch3d})
# compute epipolar masks
image_height, image_width = image_size, image_size
src_mask = compute_epipolar_mask(src_frame, tgt_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask)
tgt_mask = compute_epipolar_mask(tgt_frame, src_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask)
# compute plucker coordinates
src_plucker = compute_plucker_embed(src_frame, image_height, image_width).squeeze()
tgt_plucker = compute_plucker_embed(tgt_frame, image_height, image_width).squeeze()
return src_mask, tgt_mask, src_plucker, tgt_plucker
def get_batch_from_spherical(elevations, azimuths, fov=0.702769935131073, image_size=256):
"""Given a list of elevations and azimuths, generates cameras, computes epipolar masks and plucker embeddings and organizes them as a batch."""
num_views = len(elevations)
latent_size = image_size // 8
assert len(elevations) == len(azimuths)
# intialize all epipolar masks to ones (i.e. all pixels are considered)
batch_attention_masks = torch.ones(num_views, num_views, latent_size ** 2, latent_size ** 2, dtype=torch.bool)
plucker_embeds = [None for _ in range(num_views)]
# compute pairwise mask and plucker
for i, icam in enumerate(zip(elevations, azimuths)):
for j, jcam in enumerate(zip(elevations, azimuths)):
if i == j: continue
first_frame = edict({"fov": fov}); second_frame = edict({"fov": fov})
first_frame["camera"] = get_blender_from_spherical(elevation=icam[0], azimuth=icam[1])
second_frame["camera"] = get_blender_from_spherical(elevation=jcam[0], azimuth=jcam[1])
first_mask, second_mask, first_plucker, second_plucker = get_mask_and_plucker(first_frame, second_frame, latent_size, dialate_mask=True)
batch_attention_masks[i, j], batch_attention_masks[j, i] = first_mask, second_mask
plucker_embeds[i], plucker_embeds[j] = first_plucker, second_plucker
# organize as batch
batch = {}
batch_attention_masks = rearrange(batch_attention_masks, 'b1 b2 h w -> (b1 h) (b2 w)')
batch["epi_constraint_masks"] = batch_attention_masks
batch["plucker_embeds"] = torch.stack(plucker_embeds)
return batch
|