jadechoghari
commited on
Commit
•
80f129f
1
Parent(s):
4a2a681
Create geometry.py
Browse files- geometry.py +354 -0
geometry.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
import imageio
|
5 |
+
from skimage.draw import line
|
6 |
+
from easydict import EasyDict as edict
|
7 |
+
|
8 |
+
from pytorch3d.renderer import NDCMultinomialRaysampler, ray_bundle_to_ray_points
|
9 |
+
from pytorch3d.utils import cameras_from_opencv_projection
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
from torch.nn import functional as F
|
13 |
+
|
14 |
+
# cache for fast epipolar line drawing
|
15 |
+
try:
|
16 |
+
masks32 = np.load("/fs01/home/yashkant/spad-code/cache/masks32.npy", allow_pickle=True)
|
17 |
+
except:
|
18 |
+
print(f"failed to load cache for fast epipolar line drawing, this does not affect final results")
|
19 |
+
masks32 = None
|
20 |
+
|
21 |
+
|
22 |
+
def compute_epipolar_mask(src_frame, tgt_frame, imh, imw, dialate_mask=True, debug_depth=False, visualize_mask=False):
|
23 |
+
"""
|
24 |
+
src_frame: source frame containing camera
|
25 |
+
tgt_frame: target frame containing camera
|
26 |
+
debug_depth: if True, uses depth map to compute epipolar lines on target image (debugging)
|
27 |
+
visualize_mask: if True, saves a batched attention masks (debugging)
|
28 |
+
"""
|
29 |
+
|
30 |
+
# generates raybundle using camera intrinsics and extrinsics
|
31 |
+
src_ray_bundle = NDCMultinomialRaysampler(
|
32 |
+
image_width=imw,
|
33 |
+
image_height=imh,
|
34 |
+
n_pts_per_ray=1,
|
35 |
+
min_depth=1.0,
|
36 |
+
max_depth=1.0,
|
37 |
+
)(src_frame.camera)
|
38 |
+
|
39 |
+
src_depth = getattr(src_frame, "depth_map", None)
|
40 |
+
if debug_depth and src_depth is not None:
|
41 |
+
src_depth = src_depth[:, 0, ..., None]
|
42 |
+
src_depth[src_depth >= 100] = 100 # clip depth
|
43 |
+
else:
|
44 |
+
# get points in world space (at fixed depth)
|
45 |
+
src_depth = 3.5 * torch.ones((1, imh, imw, 1), dtype=torch.float32, device=src_frame.camera.device)
|
46 |
+
|
47 |
+
pts_world = ray_bundle_to_ray_points(
|
48 |
+
src_ray_bundle._replace(lengths=src_depth)
|
49 |
+
).squeeze(-2)
|
50 |
+
# print(f"world points bounds: {pts_world.reshape(-1,3).min(dim=0)[0]} to {pts_world.reshape(-1,3).max(dim=0)[0]}")
|
51 |
+
rays_time = time.time()
|
52 |
+
|
53 |
+
# move source points to target screen space
|
54 |
+
tgt_pts_screen = tgt_frame.camera.transform_points_screen(pts_world.squeeze(), image_size=(imh, imw))
|
55 |
+
|
56 |
+
# move source camera center to target screen space
|
57 |
+
src_center_tgt_screen = tgt_frame.camera.transform_points_screen(src_frame.camera.get_camera_center(), image_size=(imh, imw)).squeeze()
|
58 |
+
|
59 |
+
# build epipolar mask (draw lines from source camera center to source points in target screen space)
|
60 |
+
# start: source camera center, end: source points in target screen space
|
61 |
+
|
62 |
+
# get flow of points
|
63 |
+
center_to_pts_flow = tgt_pts_screen[...,:2] - src_center_tgt_screen[...,:2]
|
64 |
+
|
65 |
+
# normalize flow
|
66 |
+
center_to_pts_flow = center_to_pts_flow / center_to_pts_flow.norm(dim=-1, keepdim=True)
|
67 |
+
|
68 |
+
# get slope and intercept of lines
|
69 |
+
slope = center_to_pts_flow[:,:,0:1] / center_to_pts_flow[:,:,1:2]
|
70 |
+
intercept = tgt_pts_screen[:,:, 0:1] - slope * tgt_pts_screen[:,:, 1:2]
|
71 |
+
|
72 |
+
# find intersection of lines with tgt screen (x = 0, x = imw, y = 0, y = imh)
|
73 |
+
left = slope * 0 + intercept
|
74 |
+
left_sane = (left <= imh) & (0 <= left)
|
75 |
+
left = torch.cat([left, torch.zeros_like(left)], dim=-1)
|
76 |
+
|
77 |
+
right = slope * imw + intercept
|
78 |
+
right_sane = (right <= imh) & (0 <= right)
|
79 |
+
right = torch.cat([right, torch.ones_like(right) * imw], dim=-1)
|
80 |
+
|
81 |
+
top = (0 - intercept) / slope
|
82 |
+
top_sane = (top <= imw) & (0 <= top)
|
83 |
+
top = torch.cat([torch.zeros_like(top), top], dim=-1)
|
84 |
+
|
85 |
+
bottom = (imh - intercept) / slope
|
86 |
+
bottom_sane = (bottom <= imw) & (0 <= bottom)
|
87 |
+
bottom = torch.cat([torch.ones_like(bottom) * imh, bottom], dim=-1)
|
88 |
+
|
89 |
+
# find intersection of lines
|
90 |
+
points_one = torch.zeros_like(left)
|
91 |
+
points_two = torch.zeros_like(left)
|
92 |
+
|
93 |
+
# collect points from [left, right, bottom, top] in sequence
|
94 |
+
points_one = torch.where(left_sane.repeat(1,1,2), left, points_one)
|
95 |
+
|
96 |
+
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
|
97 |
+
points_one = torch.where(right_sane.repeat(1,1,2) & points_one_zero, right, points_one)
|
98 |
+
|
99 |
+
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
|
100 |
+
points_one = torch.where(bottom_sane.repeat(1,1,2) & points_one_zero, bottom, points_one)
|
101 |
+
|
102 |
+
points_one_zero = (points_one.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
|
103 |
+
points_one = torch.where(top_sane.repeat(1,1,2) & points_one_zero, top, points_one)
|
104 |
+
|
105 |
+
# collect points from [top, bottom, right, left] in sequence (opposite)
|
106 |
+
points_two = torch.where(top_sane.repeat(1,1,2), top, points_two)
|
107 |
+
|
108 |
+
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
|
109 |
+
points_two = torch.where(bottom_sane.repeat(1,1,2) & points_two_zero, bottom, points_two)
|
110 |
+
|
111 |
+
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
|
112 |
+
points_two = torch.where(right_sane.repeat(1,1,2) & points_two_zero, right, points_two)
|
113 |
+
|
114 |
+
points_two_zero = (points_two.sum(dim=-1) == 0).unsqueeze(-1).repeat(1,1,2)
|
115 |
+
points_two = torch.where(left_sane.repeat(1,1,2) & points_two_zero, left, points_two)
|
116 |
+
|
117 |
+
# if source point lies inside target screen (find only one intersection)
|
118 |
+
if (imh >= src_center_tgt_screen[0] >= 0) and (imw >= src_center_tgt_screen[1] >= 0):
|
119 |
+
points_one_flow = points_one - src_center_tgt_screen[:2]
|
120 |
+
points_one_flow_direction = (points_one_flow > 0)
|
121 |
+
|
122 |
+
points_two_flow = points_two - src_center_tgt_screen[:2]
|
123 |
+
points_two_flow_direction = (points_two_flow > 0)
|
124 |
+
|
125 |
+
orig_flow_direction = (center_to_pts_flow > 0)
|
126 |
+
|
127 |
+
# if flow direction is same as orig flow direction, pick points_one, else points_two
|
128 |
+
points_one_alinged = (points_one_flow_direction == orig_flow_direction).all(dim=-1).unsqueeze(-1).repeat(1,1,2)
|
129 |
+
points_one = torch.where(points_one_alinged, points_one, points_two)
|
130 |
+
|
131 |
+
# points two is source camera center
|
132 |
+
points_two = points_two * 0 + src_center_tgt_screen[:2]
|
133 |
+
|
134 |
+
# if debug terminate with depth
|
135 |
+
if debug_depth:
|
136 |
+
# remove points that are out of bounds (in target screen space)
|
137 |
+
tgt_pts_screen_mask = (tgt_pts_screen[...,:2] < 0) | (tgt_pts_screen[...,:2] > imh)
|
138 |
+
tgt_pts_screen_mask = ~tgt_pts_screen_mask.any(dim=-1, keepdim=True)
|
139 |
+
|
140 |
+
depth_dist = torch.norm(src_center_tgt_screen[:2] - tgt_pts_screen[...,:2], dim=-1, keepdim=True)
|
141 |
+
points_one_dist = torch.norm(src_center_tgt_screen[:2] - points_one, dim=-1, keepdim=True)
|
142 |
+
points_two_dist = torch.norm(src_center_tgt_screen[:2] - points_two, dim=-1, keepdim=True)
|
143 |
+
|
144 |
+
# replace where reprojected point is closer to source camera on target screen
|
145 |
+
points_one = torch.where((depth_dist < points_one_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_one)
|
146 |
+
points_two = torch.where((depth_dist < points_two_dist) & tgt_pts_screen_mask, tgt_pts_screen[...,:2], points_two)
|
147 |
+
|
148 |
+
# build epipolar mask
|
149 |
+
attention_mask = torch.zeros((imh * imw, imh, imw), dtype=torch.bool, device=src_frame.camera.device)
|
150 |
+
|
151 |
+
# quantize points to pixel indices
|
152 |
+
points_one = (points_one - 0.5).reshape(-1,2).long().numpy()
|
153 |
+
points_two = (points_two - 0.5).reshape(-1,2).long().numpy()
|
154 |
+
|
155 |
+
# cache only supports 32x32 epipolar mask with 3x3 dilation
|
156 |
+
if not (imh == 32 and imw == 32) or not dialate_mask or masks32 is None:
|
157 |
+
# iterate over points_one and points_two together and draw lines
|
158 |
+
for idx, (p1, p2) in enumerate(zip(points_one, points_two)):
|
159 |
+
# skip out of bounds points
|
160 |
+
if p1.sum() == 0 and p2.sum() == 0:
|
161 |
+
continue
|
162 |
+
|
163 |
+
if not dialate_mask:
|
164 |
+
# draw line from p1 to p2
|
165 |
+
rr, cc = line(int(p1[1]), int(p1[0]), int(p2[1]), int(p2[0]), use_cache=False)
|
166 |
+
rr, cc = rr.astype(np.int32), cc.astype(np.int32)
|
167 |
+
attention_mask[idx, rr, cc] = True
|
168 |
+
else:
|
169 |
+
# draw lines with mask dilation (from all neighbors of p1 to neighbors of p2)
|
170 |
+
rrs, ccs = [], []
|
171 |
+
for dx, dy in [(0,0), (0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1)]: # 8 neighbors
|
172 |
+
_p1 = [min(max(p1[0] + dy, 0), imh - 1), min(max(p1[1] + dx, 0), imw - 1)]
|
173 |
+
_p2 = [min(max(p2[0] + dy, 0), imh - 1), min(max(p2[1] + dx, 0), imw - 1)]
|
174 |
+
rr, cc = line(int(_p1[1]), int(_p1[0]), int(_p2[1]), int(_p2[0]))
|
175 |
+
rrs.append(rr); ccs.append(cc)
|
176 |
+
rrs, ccs = np.concatenate(rrs), np.concatenate(ccs)
|
177 |
+
attention_mask[idx, rrs.astype(np.int32), ccs.astype(np.int32)] = True
|
178 |
+
else:
|
179 |
+
points_one_y, points_one_x = points_one[:,0], points_one[:,1]
|
180 |
+
points_two_y, points_two_x = points_two[:,0], points_two[:,1]
|
181 |
+
attention_mask = masks32[points_one_y, points_one_x, points_two_y, points_two_x]
|
182 |
+
attention_mask = torch.from_numpy(attention_mask).to(src_frame.camera.device)
|
183 |
+
|
184 |
+
# reshape to (imh, imw, imh, imw)
|
185 |
+
attention_mask = attention_mask.reshape(imh * imw, imh * imw)
|
186 |
+
|
187 |
+
# stores flattened 2D attention mask
|
188 |
+
if visualize_mask:
|
189 |
+
attention_mask = attention_mask.reshape(imh * imw, imh * imw)
|
190 |
+
am_img = (attention_mask.squeeze().unsqueeze(-1).repeat(1,1,3).float().numpy() * 255).astype(np.uint8)
|
191 |
+
imageio.imsave("data/visuals/epipolar_masks/batched_mask.png", am_img)
|
192 |
+
|
193 |
+
return attention_mask
|
194 |
+
|
195 |
+
|
196 |
+
def get_opencv_from_blender(matrix_world, fov, image_size):
|
197 |
+
# convert matrix_world to opencv format extrinsics
|
198 |
+
opencv_world_to_cam = matrix_world.inverse()
|
199 |
+
opencv_world_to_cam[1, :] *= -1
|
200 |
+
opencv_world_to_cam[2, :] *= -1
|
201 |
+
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3]
|
202 |
+
R, T = R.unsqueeze(0), T.unsqueeze(0)
|
203 |
+
|
204 |
+
# convert fov to opencv format intrinsics
|
205 |
+
focal = 1 / np.tan(fov / 2)
|
206 |
+
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32)
|
207 |
+
opencv_cam_matrix = torch.from_numpy(intrinsics).unsqueeze(0).float()
|
208 |
+
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2])
|
209 |
+
opencv_cam_matrix[:, [0,1], [0,1]] *= image_size / 2
|
210 |
+
|
211 |
+
return R, T, opencv_cam_matrix
|
212 |
+
|
213 |
+
|
214 |
+
def compute_plucker_embed(frame, imw, imh):
|
215 |
+
""" Computes Plucker coordinates for a Pytorch3D camera. """
|
216 |
+
|
217 |
+
# get camera center
|
218 |
+
cam_pos = frame.camera.get_camera_center()
|
219 |
+
|
220 |
+
# get ray bundle
|
221 |
+
src_ray_bundle = NDCMultinomialRaysampler(
|
222 |
+
image_width=imw,
|
223 |
+
image_height=imh,
|
224 |
+
n_pts_per_ray=1,
|
225 |
+
min_depth=1.0,
|
226 |
+
max_depth=1.0,
|
227 |
+
)(frame.camera)
|
228 |
+
|
229 |
+
# get ray directions
|
230 |
+
ray_dirs = F.normalize(src_ray_bundle.directions, dim=-1)
|
231 |
+
|
232 |
+
# get plucker coordinates
|
233 |
+
cross = torch.cross(cam_pos[:,None,None,:], ray_dirs, dim=-1)
|
234 |
+
plucker = torch.cat((ray_dirs, cross), dim=-1)
|
235 |
+
plucker = plucker.permute(0, 3, 1, 2)
|
236 |
+
|
237 |
+
return plucker # (B, 6, H, W, )
|
238 |
+
|
239 |
+
|
240 |
+
def cartesian_to_spherical(xyz):
|
241 |
+
xy = xyz[:,0]**2 + xyz[:,1]**2
|
242 |
+
z = np.sqrt(xy + xyz[:,2]**2)
|
243 |
+
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from z-axis down
|
244 |
+
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
245 |
+
return np.stack([theta, azimuth, z], axis=-1)
|
246 |
+
|
247 |
+
|
248 |
+
def spherical_to_cartesian(spherical_coords):
|
249 |
+
# convert from spherical to cartesian coordinates
|
250 |
+
theta, azimuth, radius = spherical_coords.T
|
251 |
+
x = radius * np.sin(theta) * np.cos(azimuth)
|
252 |
+
y = radius * np.sin(theta) * np.sin(azimuth)
|
253 |
+
z = radius * np.cos(theta)
|
254 |
+
return np.stack([x, y, z], axis=-1)
|
255 |
+
|
256 |
+
|
257 |
+
def look_at(eye, center, up):
|
258 |
+
# Create a normalized direction vector from eye to center
|
259 |
+
f = np.array(center) - np.array(eye)
|
260 |
+
f /= np.linalg.norm(f)
|
261 |
+
|
262 |
+
# Create a normalized right vector
|
263 |
+
up_norm = np.array(up) / np.linalg.norm(up)
|
264 |
+
s = np.cross(f, up_norm)
|
265 |
+
s /= np.linalg.norm(s)
|
266 |
+
|
267 |
+
# Recompute the up vector
|
268 |
+
u = np.cross(s, f)
|
269 |
+
|
270 |
+
# Create rotation matrix R
|
271 |
+
R = np.array([[s[0], s[1], s[2]],
|
272 |
+
[u[0], u[1], u[2]],
|
273 |
+
[-f[0], -f[1], -f[2]]])
|
274 |
+
|
275 |
+
# Create translation vector T
|
276 |
+
T = -np.dot(R, np.array(eye))
|
277 |
+
|
278 |
+
return R, T
|
279 |
+
|
280 |
+
|
281 |
+
def get_blender_from_spherical(elevation, azimuth):
|
282 |
+
""" Generates blender camera from spherical coordinates. """
|
283 |
+
|
284 |
+
cartesian_coords = spherical_to_cartesian(np.array([[elevation, azimuth, 3.5]]))
|
285 |
+
|
286 |
+
# get camera rotation
|
287 |
+
center = np.array([0, 0, 0])
|
288 |
+
eye = cartesian_coords[0]
|
289 |
+
up = np.array([0, 0, 1])
|
290 |
+
|
291 |
+
R, T = look_at(eye, center, up)
|
292 |
+
R = R.T; T = -np.dot(R, T)
|
293 |
+
RT = np.concatenate([R, T.reshape(3,1)], axis=-1)
|
294 |
+
|
295 |
+
blender_cam = torch.from_numpy(RT).float()
|
296 |
+
blender_cam = torch.cat([blender_cam, torch.tensor([[0, 0, 0, 1]])], axis=0)
|
297 |
+
return blender_cam
|
298 |
+
|
299 |
+
|
300 |
+
def get_mask_and_plucker(src_frame, tgt_frame, image_size, dialate_mask=True, debug_depth=False, visualize_mask=False):
|
301 |
+
""" Given a pair of source and target frames (blender outputs), returns the epipolar attention masks and plucker embeddings."""
|
302 |
+
|
303 |
+
# get pytorch3d frames (blender to opencv, then opencv to pytorch3d)
|
304 |
+
src_R, src_T, src_intrinsics = get_opencv_from_blender(src_frame["camera"], src_frame["fov"], image_size)
|
305 |
+
src_camera_pytorch3d = cameras_from_opencv_projection(src_R, src_T, src_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0))
|
306 |
+
src_frame.update({"camera": src_camera_pytorch3d})
|
307 |
+
|
308 |
+
tgt_R, tgt_T, tgt_intrinsics = get_opencv_from_blender(tgt_frame["camera"], tgt_frame["fov"], image_size)
|
309 |
+
tgt_camera_pytorch3d = cameras_from_opencv_projection(tgt_R, tgt_T, tgt_intrinsics, torch.tensor([image_size, image_size]).float().unsqueeze(0))
|
310 |
+
tgt_frame.update({"camera": tgt_camera_pytorch3d})
|
311 |
+
|
312 |
+
# compute epipolar masks
|
313 |
+
image_height, image_width = image_size, image_size
|
314 |
+
src_mask = compute_epipolar_mask(src_frame, tgt_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask)
|
315 |
+
tgt_mask = compute_epipolar_mask(tgt_frame, src_frame, image_height, image_width, dialate_mask, debug_depth, visualize_mask)
|
316 |
+
|
317 |
+
# compute plucker coordinates
|
318 |
+
src_plucker = compute_plucker_embed(src_frame, image_height, image_width).squeeze()
|
319 |
+
tgt_plucker = compute_plucker_embed(tgt_frame, image_height, image_width).squeeze()
|
320 |
+
|
321 |
+
return src_mask, tgt_mask, src_plucker, tgt_plucker
|
322 |
+
|
323 |
+
|
324 |
+
def get_batch_from_spherical(elevations, azimuths, fov=0.702769935131073, image_size=256):
|
325 |
+
"""Given a list of elevations and azimuths, generates cameras, computes epipolar masks and plucker embeddings and organizes them as a batch."""
|
326 |
+
|
327 |
+
num_views = len(elevations)
|
328 |
+
latent_size = image_size // 8
|
329 |
+
assert len(elevations) == len(azimuths)
|
330 |
+
|
331 |
+
# intialize all epipolar masks to ones (i.e. all pixels are considered)
|
332 |
+
batch_attention_masks = torch.ones(num_views, num_views, latent_size ** 2, latent_size ** 2, dtype=torch.bool)
|
333 |
+
plucker_embeds = [None for _ in range(num_views)]
|
334 |
+
|
335 |
+
# compute pairwise mask and plucker
|
336 |
+
for i, icam in enumerate(zip(elevations, azimuths)):
|
337 |
+
for j, jcam in enumerate(zip(elevations, azimuths)):
|
338 |
+
if i == j: continue
|
339 |
+
|
340 |
+
first_frame = edict({"fov": fov}); second_frame = edict({"fov": fov})
|
341 |
+
first_frame["camera"] = get_blender_from_spherical(elevation=icam[0], azimuth=icam[1])
|
342 |
+
second_frame["camera"] = get_blender_from_spherical(elevation=jcam[0], azimuth=jcam[1])
|
343 |
+
first_mask, second_mask, first_plucker, second_plucker = get_mask_and_plucker(first_frame, second_frame, latent_size, dialate_mask=True)
|
344 |
+
|
345 |
+
batch_attention_masks[i, j], batch_attention_masks[j, i] = first_mask, second_mask
|
346 |
+
plucker_embeds[i], plucker_embeds[j] = first_plucker, second_plucker
|
347 |
+
|
348 |
+
# organize as batch
|
349 |
+
batch = {}
|
350 |
+
batch_attention_masks = rearrange(batch_attention_masks, 'b1 b2 h w -> (b1 h) (b2 w)')
|
351 |
+
batch["epi_constraint_masks"] = batch_attention_masks
|
352 |
+
batch["plucker_embeds"] = torch.stack(plucker_embeds)
|
353 |
+
|
354 |
+
return batch
|