File size: 4,849 Bytes
5085882 1ef59f6 5085882 1ef59f6 5085882 1ef59f6 5085882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Author: Haohe Liu
# Email: haoheliu@gmail.com
# Date: 11 Feb 2023
import sys
sys.path.append("src")
import os
import wandb
import argparse
import yaml
import torch
from pytorch_lightning.strategies.ddp import DDPStrategy
from qa_mdt.audioldm_train.utilities.data.dataset import AudioDataset
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
from qa_mdt.audioldm_train.modules.latent_encoder.autoencoder import AutoencoderKL
from pytorch_lightning.callbacks import ModelCheckpoint
from qa_mdt.audioldm_train.utilities.tools import get_restore_step
def listdir_nohidden(path):
for f in os.listdir(path):
if not f.startswith("."):
yield f
def main(configs, exp_group_name, exp_name):
if "precision" in configs.keys():
torch.set_float32_matmul_precision(configs["precision"])
batch_size = config_yaml["model"]["params"]["batchsize"]
log_path = config_yaml["log_directory"]
if "dataloader_add_ons" in configs["data"].keys():
dataloader_add_ons = configs["data"]["dataloader_add_ons"]
else:
dataloader_add_ons = []
dataset = AudioDataset(config_yaml, split="train", add_ons=dataloader_add_ons)
loader = DataLoader(
dataset, batch_size=batch_size, num_workers=8, pin_memory=True, shuffle=True
)
print(
"The length of the dataset is %s, the length of the dataloader is %s, the batchsize is %s"
% (len(dataset), len(loader), batch_size)
)
val_dataset = AudioDataset(config_yaml, split="val", add_ons=dataloader_add_ons)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
num_workers=8,
shuffle=True,
)
model = AutoencoderKL(
ddconfig=config_yaml["model"]["params"]["ddconfig"],
lossconfig=config_yaml["model"]["params"]["lossconfig"],
embed_dim=config_yaml["model"]["params"]["embed_dim"],
image_key=config_yaml["model"]["params"]["image_key"],
base_learning_rate=config_yaml["model"]["base_learning_rate"],
subband=config_yaml["model"]["params"]["subband"],
sampling_rate=config_yaml["preprocessing"]["audio"]["sampling_rate"],
)
try:
config_reload_from_ckpt = configs["reload_from_ckpt"]
except:
config_reload_from_ckpt = None
checkpoint_path = os.path.join(log_path, exp_group_name, exp_name, "checkpoints")
checkpoint_callback = ModelCheckpoint(
dirpath=checkpoint_path,
monitor="global_step",
mode="max",
filename="checkpoint-{global_step:.0f}",
every_n_train_steps=5000,
save_top_k=config_yaml["step"]["save_top_k"],
auto_insert_metric_name=False,
save_last=True,
)
wandb_path = os.path.join(log_path, exp_group_name, exp_name)
model.set_log_dir(log_path, exp_group_name, exp_name)
os.makedirs(checkpoint_path, exist_ok=True)
if len(os.listdir(checkpoint_path)) > 0:
print("Load checkpoint from path: %s" % checkpoint_path)
restore_step, n_step = get_restore_step(checkpoint_path)
resume_from_checkpoint = os.path.join(checkpoint_path, restore_step)
print("Resume from checkpoint", resume_from_checkpoint)
elif config_reload_from_ckpt is not None:
resume_from_checkpoint = config_reload_from_ckpt
print("Reload ckpt specified in the config file %s" % resume_from_checkpoint)
else:
print("Train from scratch")
resume_from_checkpoint = None
devices = torch.cuda.device_count()
wandb_logger = WandbLogger(
save_dir=wandb_path,
project=config_yaml["project"],
config=config_yaml,
name="%s/%s" % (exp_group_name, exp_name),
)
trainer = Trainer(
accelerator="gpu",
devices=devices,
logger=wandb_logger,
limit_val_batches=100,
callbacks=[checkpoint_callback],
strategy=DDPStrategy(find_unused_parameters=True),
val_check_interval=2000,
)
# TRAINING
trainer.fit(model, loader, val_loader, ckpt_path=resume_from_checkpoint)
# EVALUTION
# trainer.test(model, test_loader, ckpt_path=resume_from_checkpoint)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--autoencoder_config",
type=str,
required=True,
help="path to autoencoder config .yam",
)
args = parser.parse_args()
config_yaml = args.autoencoder_config
exp_name = os.path.basename(config_yaml.split(".")[0])
exp_group_name = os.path.basename(os.path.dirname(config_yaml))
config_yaml = os.path.join(config_yaml)
config_yaml = yaml.load(open(config_yaml, "r"), Loader=yaml.FullLoader)
main(config_yaml, exp_group_name, exp_name)
|