File size: 21,159 Bytes
5085882 7869f0a 5085882 7869f0a 5085882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
from functools import partial
from json import encoder
import torch
import torch.nn as nn
from timm.models.vision_transformer import Block
from qa_mdt.audioldm_train.modules.audiomae.util.pos_embed import (
get_2d_sincos_pos_embed,
get_2d_sincos_pos_embed_flexible,
get_1d_sincos_pos_embed_from_grid,
)
from qa_mdt.audioldm_train.modules.audiomae.util.patch_embed import (
PatchEmbed_new,
PatchEmbed_org,
)
class MaskedAutoencoderViT(nn.Module):
"""Masked Autoencoder with VisionTransformer backbone"""
def __init__(
self,
img_size=224,
patch_size=16,
stride=10,
in_chans=3,
embed_dim=1024,
depth=24,
num_heads=16,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.0,
norm_layer=nn.LayerNorm,
norm_pix_loss=False,
audio_exp=False,
alpha=0.0,
temperature=0.2,
mode=0,
contextual_depth=8,
use_custom_patch=False,
split_pos=False,
pos_trainable=False,
use_nce=False,
beta=4.0,
decoder_mode=0,
mask_t_prob=0.6,
mask_f_prob=0.5,
mask_2d=False,
epoch=0,
no_shift=False,
):
super().__init__()
self.audio_exp = audio_exp
self.embed_dim = embed_dim
self.decoder_embed_dim = decoder_embed_dim
# --------------------------------------------------------------------------
# MAE encoder specifics
if use_custom_patch:
print(
f"Use custom patch_emb with patch size: {patch_size}, stride: {stride}"
)
self.patch_embed = PatchEmbed_new(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
stride=stride,
)
else:
self.patch_embed = PatchEmbed_org(img_size, patch_size, in_chans, embed_dim)
self.use_custom_patch = use_custom_patch
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.split_pos = split_pos # not useful
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim), requires_grad=pos_trainable
) # fixed sin-cos embedding
self.encoder_depth = depth
self.contextual_depth = contextual_depth
self.blocks = nn.ModuleList(
[
Block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=norm_layer,
) # qk_scale=None
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# MAE decoder specifics
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, decoder_embed_dim),
requires_grad=pos_trainable,
) # fixed sin-cos embedding
self.no_shift = no_shift
self.decoder_mode = decoder_mode
if (
self.use_custom_patch
): # overlapped patches as in AST. Similar performance yet compute heavy
window_size = (6, 6)
feat_size = (102, 12)
else:
window_size = (4, 4)
feat_size = (64, 8)
if self.decoder_mode == 1:
decoder_modules = []
for index in range(16):
if self.no_shift:
shift_size = (0, 0)
else:
if (index % 2) == 0:
shift_size = (0, 0)
else:
shift_size = (2, 0)
# shift_size = tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size])
decoder_modules.append(
SwinTransformerBlock(
dim=decoder_embed_dim,
num_heads=16,
feat_size=feat_size,
window_size=window_size,
shift_size=shift_size,
mlp_ratio=mlp_ratio,
drop=0.0,
drop_attn=0.0,
drop_path=0.0,
extra_norm=False,
sequential_attn=False,
norm_layer=norm_layer, # nn.LayerNorm,
)
)
self.decoder_blocks = nn.ModuleList(decoder_modules)
else:
# Transfomer
self.decoder_blocks = nn.ModuleList(
[
Block(
decoder_embed_dim,
decoder_num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=norm_layer,
) # qk_scale=None,
for i in range(decoder_depth)
]
)
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(
decoder_embed_dim, patch_size**2 * in_chans, bias=True
) # decoder to patch
# --------------------------------------------------------------------------
self.norm_pix_loss = norm_pix_loss
self.patch_size = patch_size
self.stride = stride
# audio exps
self.alpha = alpha
self.T = temperature
self.mode = mode
self.use_nce = use_nce
self.beta = beta
self.log_softmax = nn.LogSoftmax(dim=-1)
self.mask_t_prob = mask_t_prob
self.mask_f_prob = mask_f_prob
self.mask_2d = mask_2d
self.epoch = epoch
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
if self.audio_exp:
pos_embed = get_2d_sincos_pos_embed_flexible(
self.pos_embed.shape[-1], self.patch_embed.patch_hw, cls_token=True
)
else:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1],
int(self.patch_embed.num_patches**0.5),
cls_token=True,
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
if self.audio_exp:
decoder_pos_embed = get_2d_sincos_pos_embed_flexible(
self.decoder_pos_embed.shape[-1],
self.patch_embed.patch_hw,
cls_token=True,
)
else:
decoder_pos_embed = get_2d_sincos_pos_embed(
self.decoder_pos_embed.shape[-1],
int(self.patch_embed.num_patches**0.5),
cls_token=True,
)
self.decoder_pos_embed.data.copy_(
torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)
)
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=0.02)
torch.nn.init.normal_(self.mask_token, std=0.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def patchify(self, imgs):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
L = (H/p)*(W/p)
"""
p = self.patch_embed.patch_size[0]
# assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
if self.audio_exp:
if self.use_custom_patch: # overlapped patch
h, w = self.patch_embed.patch_hw
# todo: fixed h/w patch size and stride size. Make hw custom in the future
x = imgs.unfold(2, self.patch_size, self.stride).unfold(
3, self.patch_size, self.stride
) # n,1,H,W -> n,1,h,w,p,p
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
# x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
# x = torch.einsum('nchpwq->nhwpqc', x)
# x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
else:
h = imgs.shape[2] // p
w = imgs.shape[3] // p
# h,w = self.patch_embed.patch_hw
x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
x = torch.einsum("nchpwq->nhwpqc", x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
else:
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum("nchpwq->nhwpqc", x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
return x
def unpatchify(self, x):
"""
x: (N, L, patch_size**2 *3)
specs: (N, 1, H, W)
"""
p = self.patch_embed.patch_size[0]
h = 1024 // p
w = 128 // p
x = x.reshape(shape=(x.shape[0], h, w, p, p, 1))
x = torch.einsum("nhwpqc->nchpwq", x)
specs = x.reshape(shape=(x.shape[0], 1, h * p, w * p))
return specs
def random_masking(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1
) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def random_masking_2d(self, x, mask_t_prob, mask_f_prob):
"""
2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob)
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
if self.use_custom_patch: # overlapped patch
T = 101
F = 12
else:
T = 64
F = 8
# x = x.reshape(N, T, F, D)
len_keep_t = int(T * (1 - mask_t_prob))
len_keep_f = int(F * (1 - mask_f_prob))
# noise for mask in time
noise_t = torch.rand(N, T, device=x.device) # noise in [0, 1]
# sort noise for each sample aling time
ids_shuffle_t = torch.argsort(
noise_t, dim=1
) # ascend: small is keep, large is remove
ids_restore_t = torch.argsort(ids_shuffle_t, dim=1)
ids_keep_t = ids_shuffle_t[:, :len_keep_t]
# noise mask in freq
noise_f = torch.rand(N, F, device=x.device) # noise in [0, 1]
ids_shuffle_f = torch.argsort(
noise_f, dim=1
) # ascend: small is keep, large is remove
ids_restore_f = torch.argsort(ids_shuffle_f, dim=1)
ids_keep_f = ids_shuffle_f[:, :len_keep_f] #
# generate the binary mask: 0 is keep, 1 is remove
# mask in freq
mask_f = torch.ones(N, F, device=x.device)
mask_f[:, :len_keep_f] = 0
mask_f = (
torch.gather(mask_f, dim=1, index=ids_restore_f)
.unsqueeze(1)
.repeat(1, T, 1)
) # N,T,F
# mask in time
mask_t = torch.ones(N, T, device=x.device)
mask_t[:, :len_keep_t] = 0
mask_t = (
torch.gather(mask_t, dim=1, index=ids_restore_t)
.unsqueeze(1)
.repeat(1, F, 1)
.permute(0, 2, 1)
) # N,T,F
mask = 1 - (1 - mask_t) * (1 - mask_f) # N, T, F
# get masked x
id2res = torch.Tensor(list(range(N * T * F))).reshape(N, T, F).to(x.device)
id2res = id2res + 999 * mask # add a large value for masked elements
id2res2 = torch.argsort(id2res.flatten(start_dim=1))
ids_keep = id2res2.flatten(start_dim=1)[:, : len_keep_f * len_keep_t]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
ids_restore = torch.argsort(id2res2.flatten(start_dim=1))
mask = mask.flatten(start_dim=1)
return x_masked, mask, ids_restore
def forward_encoder(self, x, mask_ratio, mask_2d=False):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * mask_ratio
if mask_2d:
x, mask, ids_restore = self.random_masking_2d(
x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob
)
else:
x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x, mask, ids_restore, None
def forward_encoder_no_random_mask_no_average(self, x):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * mask_ratio
# if mask_2d:
# x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob)
# else:
# x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def forward_encoder_no_mask(self, x):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * mask_ratio
# x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
contextual_embs = []
for n, blk in enumerate(self.blocks):
x = blk(x)
if n > self.contextual_depth:
contextual_embs.append(self.norm(x))
# x = self.norm(x)
contextual_emb = torch.stack(contextual_embs, dim=0).mean(dim=0)
return contextual_emb
def forward_decoder(self, x, ids_restore):
# embed tokens
x = self.decoder_embed(x)
# append mask tokens to sequence
mask_tokens = self.mask_token.repeat(
x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1
)
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
x_ = torch.gather(
x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])
) # unshuffle
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
# add pos embed
x = x + self.decoder_pos_embed
if self.decoder_mode != 0:
B, L, D = x.shape
x = x[:, 1:, :]
if self.use_custom_patch:
x = x.reshape(B, 101, 12, D)
x = torch.cat([x, x[:, -1, :].unsqueeze(1)], dim=1) # hack
x = x.reshape(B, 1224, D)
if self.decoder_mode > 3: # mvit
x = self.decoder_blocks(x)
else:
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
pred = self.decoder_pred(x)
# remove cls token
if self.decoder_mode != 0:
if self.use_custom_patch:
pred = pred.reshape(B, 102, 12, 256)
pred = pred[:, :101, :, :]
pred = pred.reshape(B, 1212, 256)
else:
pred = pred
else:
pred = pred[:, 1:, :]
return pred, None, None # emb, emb_pixel
def forward_loss(self, imgs, pred, mask, norm_pix_loss=False):
"""
imgs: [N, 3, H, W]
pred: [N, L, p*p*3]
mask: [N, L], 0 is keep, 1 is remove,
"""
target = self.patchify(imgs)
if norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.0e-6) ** 0.5
loss = (pred - target) ** 2
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def forward(self, imgs, mask_ratio=0.8):
emb_enc, mask, ids_restore, _ = self.forward_encoder(
imgs, mask_ratio, mask_2d=self.mask_2d
)
pred, _, _ = self.forward_decoder(emb_enc, ids_restore) # [N, L, p*p*3]
loss_recon = self.forward_loss(
imgs, pred, mask, norm_pix_loss=self.norm_pix_loss
)
loss_contrastive = torch.FloatTensor([0.0]).cuda()
return loss_recon, pred, mask, loss_contrastive
def mae_vit_small_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16,
embed_dim=384,
depth=12,
num_heads=6,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def mae_vit_base_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def mae_vit_large_patch16_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def mae_vit_huge_patch14_dec512d8b(**kwargs):
model = MaskedAutoencoderViT(
patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
decoder_embed_dim=512,
decoder_num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
# set recommended archs
mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_small_patch16 = mae_vit_small_patch16_dec512d8b # decoder: 512 dim, 8 blocks
|