File size: 21,145 Bytes
5085882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------

from functools import partial
from json import encoder

import torch
import torch.nn as nn

from timm.models.vision_transformer import Block
from audioldm_train.modules.audiomae.util.pos_embed import (
    get_2d_sincos_pos_embed,
    get_2d_sincos_pos_embed_flexible,
    get_1d_sincos_pos_embed_from_grid,
)
from audioldm_train.modules.audiomae.util.patch_embed import (
    PatchEmbed_new,
    PatchEmbed_org,
)


class MaskedAutoencoderViT(nn.Module):
    """Masked Autoencoder with VisionTransformer backbone"""

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        stride=10,
        in_chans=3,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        decoder_embed_dim=512,
        decoder_depth=8,
        decoder_num_heads=16,
        mlp_ratio=4.0,
        norm_layer=nn.LayerNorm,
        norm_pix_loss=False,
        audio_exp=False,
        alpha=0.0,
        temperature=0.2,
        mode=0,
        contextual_depth=8,
        use_custom_patch=False,
        split_pos=False,
        pos_trainable=False,
        use_nce=False,
        beta=4.0,
        decoder_mode=0,
        mask_t_prob=0.6,
        mask_f_prob=0.5,
        mask_2d=False,
        epoch=0,
        no_shift=False,
    ):
        super().__init__()

        self.audio_exp = audio_exp
        self.embed_dim = embed_dim
        self.decoder_embed_dim = decoder_embed_dim
        # --------------------------------------------------------------------------
        # MAE encoder specifics
        if use_custom_patch:
            print(
                f"Use custom patch_emb with patch size: {patch_size}, stride: {stride}"
            )
            self.patch_embed = PatchEmbed_new(
                img_size=img_size,
                patch_size=patch_size,
                in_chans=in_chans,
                embed_dim=embed_dim,
                stride=stride,
            )
        else:
            self.patch_embed = PatchEmbed_org(img_size, patch_size, in_chans, embed_dim)
        self.use_custom_patch = use_custom_patch
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))

        # self.split_pos = split_pos # not useful
        self.pos_embed = nn.Parameter(
            torch.zeros(1, num_patches + 1, embed_dim), requires_grad=pos_trainable
        )  # fixed sin-cos embedding

        self.encoder_depth = depth
        self.contextual_depth = contextual_depth
        self.blocks = nn.ModuleList(
            [
                Block(
                    embed_dim,
                    num_heads,
                    mlp_ratio,
                    qkv_bias=True,
                    norm_layer=norm_layer,
                )  # qk_scale=None
                for i in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

        # --------------------------------------------------------------------------
        # MAE decoder specifics
        self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)

        self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
        self.decoder_pos_embed = nn.Parameter(
            torch.zeros(1, num_patches + 1, decoder_embed_dim),
            requires_grad=pos_trainable,
        )  # fixed sin-cos embedding

        self.no_shift = no_shift

        self.decoder_mode = decoder_mode
        if (
            self.use_custom_patch
        ):  # overlapped patches as in AST. Similar performance yet compute heavy
            window_size = (6, 6)
            feat_size = (102, 12)
        else:
            window_size = (4, 4)
            feat_size = (64, 8)
        if self.decoder_mode == 1:
            decoder_modules = []
            for index in range(16):
                if self.no_shift:
                    shift_size = (0, 0)
                else:
                    if (index % 2) == 0:
                        shift_size = (0, 0)
                    else:
                        shift_size = (2, 0)
                    # shift_size = tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size])
                decoder_modules.append(
                    SwinTransformerBlock(
                        dim=decoder_embed_dim,
                        num_heads=16,
                        feat_size=feat_size,
                        window_size=window_size,
                        shift_size=shift_size,
                        mlp_ratio=mlp_ratio,
                        drop=0.0,
                        drop_attn=0.0,
                        drop_path=0.0,
                        extra_norm=False,
                        sequential_attn=False,
                        norm_layer=norm_layer,  # nn.LayerNorm,
                    )
                )
            self.decoder_blocks = nn.ModuleList(decoder_modules)
        else:
            # Transfomer
            self.decoder_blocks = nn.ModuleList(
                [
                    Block(
                        decoder_embed_dim,
                        decoder_num_heads,
                        mlp_ratio,
                        qkv_bias=True,
                        norm_layer=norm_layer,
                    )  # qk_scale=None,
                    for i in range(decoder_depth)
                ]
            )

        self.decoder_norm = norm_layer(decoder_embed_dim)
        self.decoder_pred = nn.Linear(
            decoder_embed_dim, patch_size**2 * in_chans, bias=True
        )  # decoder to patch

        # --------------------------------------------------------------------------

        self.norm_pix_loss = norm_pix_loss

        self.patch_size = patch_size
        self.stride = stride

        # audio exps
        self.alpha = alpha
        self.T = temperature
        self.mode = mode
        self.use_nce = use_nce
        self.beta = beta

        self.log_softmax = nn.LogSoftmax(dim=-1)

        self.mask_t_prob = mask_t_prob
        self.mask_f_prob = mask_f_prob
        self.mask_2d = mask_2d

        self.epoch = epoch

        self.initialize_weights()

    def initialize_weights(self):
        # initialization
        # initialize (and freeze) pos_embed by sin-cos embedding
        if self.audio_exp:
            pos_embed = get_2d_sincos_pos_embed_flexible(
                self.pos_embed.shape[-1], self.patch_embed.patch_hw, cls_token=True
            )
        else:
            pos_embed = get_2d_sincos_pos_embed(
                self.pos_embed.shape[-1],
                int(self.patch_embed.num_patches**0.5),
                cls_token=True,
            )
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        if self.audio_exp:
            decoder_pos_embed = get_2d_sincos_pos_embed_flexible(
                self.decoder_pos_embed.shape[-1],
                self.patch_embed.patch_hw,
                cls_token=True,
            )
        else:
            decoder_pos_embed = get_2d_sincos_pos_embed(
                self.decoder_pos_embed.shape[-1],
                int(self.patch_embed.num_patches**0.5),
                cls_token=True,
            )
        self.decoder_pos_embed.data.copy_(
            torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)
        )

        # initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        w = self.patch_embed.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
        torch.nn.init.normal_(self.cls_token, std=0.02)
        torch.nn.init.normal_(self.mask_token, std=0.02)

        # initialize nn.Linear and nn.LayerNorm
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def patchify(self, imgs):
        """
        imgs: (N, 3, H, W)
        x: (N, L, patch_size**2 *3)
        L = (H/p)*(W/p)
        """
        p = self.patch_embed.patch_size[0]
        # assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0

        if self.audio_exp:
            if self.use_custom_patch:  # overlapped patch
                h, w = self.patch_embed.patch_hw
                # todo: fixed h/w patch size and stride size. Make hw custom in the future
                x = imgs.unfold(2, self.patch_size, self.stride).unfold(
                    3, self.patch_size, self.stride
                )  # n,1,H,W -> n,1,h,w,p,p
                x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
                # x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
                # x = torch.einsum('nchpwq->nhwpqc', x)
                # x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
            else:
                h = imgs.shape[2] // p
                w = imgs.shape[3] // p
                # h,w = self.patch_embed.patch_hw
                x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
                x = torch.einsum("nchpwq->nhwpqc", x)
                x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
        else:
            h = w = imgs.shape[2] // p
            x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
            x = torch.einsum("nchpwq->nhwpqc", x)
            x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))

        return x

    def unpatchify(self, x):
        """
        x: (N, L, patch_size**2 *3)
        specs: (N, 1, H, W)
        """
        p = self.patch_embed.patch_size[0]
        h = 1024 // p
        w = 128 // p
        x = x.reshape(shape=(x.shape[0], h, w, p, p, 1))
        x = torch.einsum("nhwpqc->nchpwq", x)
        specs = x.reshape(shape=(x.shape[0], 1, h * p, w * p))
        return specs

    def random_masking(self, x, mask_ratio):
        """
        Perform per-sample random masking by per-sample shuffling.
        Per-sample shuffling is done by argsort random noise.
        x: [N, L, D], sequence
        """
        N, L, D = x.shape  # batch, length, dim
        len_keep = int(L * (1 - mask_ratio))

        noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]

        # sort noise for each sample
        ids_shuffle = torch.argsort(
            noise, dim=1
        )  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

        # generate the binary mask: 0 is keep, 1 is remove
        mask = torch.ones([N, L], device=x.device)
        mask[:, :len_keep] = 0
        # unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return x_masked, mask, ids_restore

    def random_masking_2d(self, x, mask_t_prob, mask_f_prob):
        """
        2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob)
        Perform per-sample random masking by per-sample shuffling.
        Per-sample shuffling is done by argsort random noise.
        x: [N, L, D], sequence
        """
        N, L, D = x.shape  # batch, length, dim
        if self.use_custom_patch:  # overlapped patch
            T = 101
            F = 12
        else:
            T = 64
            F = 8
        # x = x.reshape(N, T, F, D)
        len_keep_t = int(T * (1 - mask_t_prob))
        len_keep_f = int(F * (1 - mask_f_prob))

        # noise for mask in time
        noise_t = torch.rand(N, T, device=x.device)  # noise in [0, 1]
        # sort noise for each sample aling time
        ids_shuffle_t = torch.argsort(
            noise_t, dim=1
        )  # ascend: small is keep, large is remove
        ids_restore_t = torch.argsort(ids_shuffle_t, dim=1)
        ids_keep_t = ids_shuffle_t[:, :len_keep_t]
        # noise mask in freq
        noise_f = torch.rand(N, F, device=x.device)  # noise in [0, 1]
        ids_shuffle_f = torch.argsort(
            noise_f, dim=1
        )  # ascend: small is keep, large is remove
        ids_restore_f = torch.argsort(ids_shuffle_f, dim=1)
        ids_keep_f = ids_shuffle_f[:, :len_keep_f]  #

        # generate the binary mask: 0 is keep, 1 is remove
        # mask in freq
        mask_f = torch.ones(N, F, device=x.device)
        mask_f[:, :len_keep_f] = 0
        mask_f = (
            torch.gather(mask_f, dim=1, index=ids_restore_f)
            .unsqueeze(1)
            .repeat(1, T, 1)
        )  # N,T,F
        # mask in time
        mask_t = torch.ones(N, T, device=x.device)
        mask_t[:, :len_keep_t] = 0
        mask_t = (
            torch.gather(mask_t, dim=1, index=ids_restore_t)
            .unsqueeze(1)
            .repeat(1, F, 1)
            .permute(0, 2, 1)
        )  # N,T,F
        mask = 1 - (1 - mask_t) * (1 - mask_f)  # N, T, F

        # get masked x
        id2res = torch.Tensor(list(range(N * T * F))).reshape(N, T, F).to(x.device)
        id2res = id2res + 999 * mask  # add a large value for masked elements
        id2res2 = torch.argsort(id2res.flatten(start_dim=1))
        ids_keep = id2res2.flatten(start_dim=1)[:, : len_keep_f * len_keep_t]
        x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

        ids_restore = torch.argsort(id2res2.flatten(start_dim=1))
        mask = mask.flatten(start_dim=1)

        return x_masked, mask, ids_restore

    def forward_encoder(self, x, mask_ratio, mask_2d=False):
        # embed patches
        x = self.patch_embed(x)
        # add pos embed w/o cls token
        x = x + self.pos_embed[:, 1:, :]

        # masking: length -> length * mask_ratio
        if mask_2d:
            x, mask, ids_restore = self.random_masking_2d(
                x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob
            )
        else:
            x, mask, ids_restore = self.random_masking(x, mask_ratio)

        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)

        return x, mask, ids_restore, None

    def forward_encoder_no_random_mask_no_average(self, x):
        # embed patches
        x = self.patch_embed(x)
        # add pos embed w/o cls token
        x = x + self.pos_embed[:, 1:, :]

        # masking: length -> length * mask_ratio
        # if mask_2d:
        #     x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob)
        # else:
        #     x, mask, ids_restore = self.random_masking(x, mask_ratio)

        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)

        return x

    def forward_encoder_no_mask(self, x):
        # embed patches
        x = self.patch_embed(x)

        # add pos embed w/o cls token
        x = x + self.pos_embed[:, 1:, :]

        # masking: length -> length * mask_ratio
        # x, mask, ids_restore = self.random_masking(x, mask_ratio)
        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # apply Transformer blocks
        contextual_embs = []
        for n, blk in enumerate(self.blocks):
            x = blk(x)
            if n > self.contextual_depth:
                contextual_embs.append(self.norm(x))
        # x = self.norm(x)
        contextual_emb = torch.stack(contextual_embs, dim=0).mean(dim=0)

        return contextual_emb

    def forward_decoder(self, x, ids_restore):
        # embed tokens
        x = self.decoder_embed(x)

        # append mask tokens to sequence
        mask_tokens = self.mask_token.repeat(
            x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1
        )
        x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1)  # no cls token
        x_ = torch.gather(
            x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])
        )  # unshuffle
        x = torch.cat([x[:, :1, :], x_], dim=1)  # append cls token

        # add pos embed
        x = x + self.decoder_pos_embed

        if self.decoder_mode != 0:
            B, L, D = x.shape
            x = x[:, 1:, :]
            if self.use_custom_patch:
                x = x.reshape(B, 101, 12, D)
                x = torch.cat([x, x[:, -1, :].unsqueeze(1)], dim=1)  # hack
                x = x.reshape(B, 1224, D)
        if self.decoder_mode > 3:  # mvit
            x = self.decoder_blocks(x)
        else:
            # apply Transformer blocks
            for blk in self.decoder_blocks:
                x = blk(x)
        x = self.decoder_norm(x)

        # predictor projection
        pred = self.decoder_pred(x)

        # remove cls token
        if self.decoder_mode != 0:
            if self.use_custom_patch:
                pred = pred.reshape(B, 102, 12, 256)
                pred = pred[:, :101, :, :]
                pred = pred.reshape(B, 1212, 256)
            else:
                pred = pred
        else:
            pred = pred[:, 1:, :]
        return pred, None, None  # emb, emb_pixel

    def forward_loss(self, imgs, pred, mask, norm_pix_loss=False):
        """
        imgs: [N, 3, H, W]
        pred: [N, L, p*p*3]
        mask: [N, L], 0 is keep, 1 is remove,
        """
        target = self.patchify(imgs)
        if norm_pix_loss:
            mean = target.mean(dim=-1, keepdim=True)
            var = target.var(dim=-1, keepdim=True)
            target = (target - mean) / (var + 1.0e-6) ** 0.5

        loss = (pred - target) ** 2
        loss = loss.mean(dim=-1)  # [N, L], mean loss per patch

        loss = (loss * mask).sum() / mask.sum()  # mean loss on removed patches
        return loss

    def forward(self, imgs, mask_ratio=0.8):
        emb_enc, mask, ids_restore, _ = self.forward_encoder(
            imgs, mask_ratio, mask_2d=self.mask_2d
        )
        pred, _, _ = self.forward_decoder(emb_enc, ids_restore)  # [N, L, p*p*3]
        loss_recon = self.forward_loss(
            imgs, pred, mask, norm_pix_loss=self.norm_pix_loss
        )
        loss_contrastive = torch.FloatTensor([0.0]).cuda()
        return loss_recon, pred, mask, loss_contrastive


def mae_vit_small_patch16_dec512d8b(**kwargs):
    model = MaskedAutoencoderViT(
        patch_size=16,
        embed_dim=384,
        depth=12,
        num_heads=6,
        decoder_embed_dim=512,
        decoder_num_heads=16,
        mlp_ratio=4,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    return model


def mae_vit_base_patch16_dec512d8b(**kwargs):
    model = MaskedAutoencoderViT(
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        decoder_embed_dim=512,
        decoder_num_heads=16,
        mlp_ratio=4,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    return model


def mae_vit_large_patch16_dec512d8b(**kwargs):
    model = MaskedAutoencoderViT(
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        decoder_embed_dim=512,
        decoder_num_heads=16,
        mlp_ratio=4,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    return model


def mae_vit_huge_patch14_dec512d8b(**kwargs):
    model = MaskedAutoencoderViT(
        patch_size=14,
        embed_dim=1280,
        depth=32,
        num_heads=16,
        decoder_embed_dim=512,
        decoder_num_heads=16,
        mlp_ratio=4,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    return model


# set recommended archs
mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b  # decoder: 512 dim, 8 blocks
mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b  # decoder: 512 dim, 8 blocks
mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b  # decoder: 512 dim, 8 blocks
mae_vit_small_patch16 = mae_vit_small_patch16_dec512d8b  # decoder: 512 dim, 8 blocks