File size: 23,477 Bytes
5085882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import sys
sys.path.append("src")
import os
import pandas as pd
import yaml
import audioldm_train.utilities.audio as Audio
from audioldm_train.utilities.tools import load_json
from audioldm_train.dataset_plugin import *
from librosa.filters import mel as librosa_mel_fn
import random
from torch.utils.data import Dataset
import torch.nn.functional
import torch
import numpy as np
import torchaudio
import json
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
class AudioDataset(Dataset):
def __init__(
self,
config=None,
split="train",
waveform_only=False,
add_ons=[],
dataset_json=None,
):
"""
Dataset that manages audio recordings
:param audio_conf: Dictionary containing the audio loading and preprocessing settings
:param dataset_json_file
"""
self.config = config
self.split = split
self.pad_wav_start_sample = 0 # If none, random choose
self.trim_wav = False
self.waveform_only = waveform_only
self.add_ons = [eval(x) for x in add_ons]
print("Add-ons:", self.add_ons)
self.build_setting_parameters()
# For an external dataset
if dataset_json is not None:
self.data = dataset_json["data"]
self.id2label, self.index_dict, self.num2label = {}, {}, {}
else:
self.metadata_root = load_json(self.config["metadata_root"])
self.dataset_name = self.config["data"][self.split]
assert split in self.config["data"].keys(), (
"The dataset split %s you specified is not present in the config. You can choose from %s"
% (split, self.config["data"].keys())
)
self.build_dataset()
self.build_id_to_label()
self.build_dsp()
self.label_num = len(self.index_dict)
print("Dataset initialize finished")
def __getitem__(self, index):
(
fname,
waveform,
stft,
log_mel_spec,
label_vector, # the one-hot representation of the audio class
# the metadata of the sampled audio file and the mixup audio file (if exist)
(datum, mix_datum),
random_start,
) = self.feature_extraction(index)
text = self.get_sample_text_caption(datum, mix_datum, label_vector)
data = {
"text": text, # list
"fname": self.text_to_filename(text) if (not fname) else fname, # list
# tensor, [batchsize, class_num]
"label_vector": "" if (label_vector is None) else label_vector.float(),
# tensor, [batchsize, 1, samples_num]
"waveform": "" if (waveform is None) else waveform.float(),
# tensor, [batchsize, t-steps, f-bins]
"stft": "" if (stft is None) else stft.float(),
# tensor, [batchsize, t-steps, mel-bins]
"log_mel_spec": "" if (log_mel_spec is None) else log_mel_spec.float(),
"duration": self.duration,
"sampling_rate": self.sampling_rate,
"random_start_sample_in_original_audio_file": random_start,
"mos": 3
}
for add_on in self.add_ons:
data.update(add_on(self.config, data, self.data[index]))
if data["text"] is None:
print("Warning: The model return None on key text", fname)
data["text"] = ""
return data
def text_to_filename(self, text):
return text.replace(" ", "_").replace("'", "_").replace('"', "_")
def get_dataset_root_path(self, dataset):
assert dataset in self.metadata_root.keys()
return self.metadata_root[dataset]
def get_dataset_metadata_path(self, dataset, key):
# key: train, test, val, class_label_indices
try:
if dataset in self.metadata_root["metadata"]["path"].keys():
return self.metadata_root["metadata"]["path"][dataset][key]
except:
raise ValueError(
'Dataset %s does not metadata "%s" specified' % (dataset, key)
)
def __len__(self):
return len(self.data)
def feature_extraction(self, index):
if index > len(self.data) - 1:
print(
"The index of the dataloader is out of range: %s/%s"
% (index, len(self.data))
)
index = random.randint(0, len(self.data) - 1)
# Read wave file and extract feature
while True:
try:
label_indices = np.zeros(self.label_num, dtype=np.float32)
datum = self.data[index]
(
log_mel_spec,
stft,
waveform,
random_start,
) = self.read_audio_file(datum["wav"])
mix_datum = None
if self.label_num > 0 and "labels" in datum.keys():
for label_str in datum["labels"].split(","):
label_indices[int(self.index_dict[label_str])] = 1.0
# If the key "label" is not in the metadata, return all zero vector
label_indices = torch.FloatTensor(label_indices)
break
except Exception as e:
index = (index + 1) % len(self.data)
print(
"Error encounter during audio feature extraction: ", e, datum["wav"]
)
continue
# The filename of the wav file
fname = datum["wav"]
# t_step = log_mel_spec.size(0)
# waveform = torch.FloatTensor(waveform[..., : int(self.hopsize * t_step)])
waveform = torch.FloatTensor(waveform)
return (
fname,
waveform,
stft,
log_mel_spec,
label_indices,
(datum, mix_datum),
random_start,
)
# def augmentation(self, log_mel_spec):
# assert torch.min(log_mel_spec) < 0
# log_mel_spec = log_mel_spec.exp()
# log_mel_spec = torch.transpose(log_mel_spec, 0, 1)
# # this is just to satisfy new torchaudio version.
# log_mel_spec = log_mel_spec.unsqueeze(0)
# if self.freqm != 0:
# log_mel_spec = self.frequency_masking(log_mel_spec, self.freqm)
# if self.timem != 0:
# log_mel_spec = self.time_masking(
# log_mel_spec, self.timem) # self.timem=0
# log_mel_spec = (log_mel_spec + 1e-7).log()
# # squeeze back
# log_mel_spec = log_mel_spec.squeeze(0)
# log_mel_spec = torch.transpose(log_mel_spec, 0, 1)
# return log_mel_spec
def build_setting_parameters(self):
# Read from the json config
self.melbins = self.config["preprocessing"]["mel"]["n_mel_channels"]
# self.freqm = self.config["preprocessing"]["mel"]["freqm"]
# self.timem = self.config["preprocessing"]["mel"]["timem"]
self.sampling_rate = self.config["preprocessing"]["audio"]["sampling_rate"]
self.hopsize = self.config["preprocessing"]["stft"]["hop_length"]
self.duration = self.config["preprocessing"]["audio"]["duration"]
self.target_length = int(self.duration * self.sampling_rate / self.hopsize)
self.mixup = self.config["augmentation"]["mixup"]
# Calculate parameter derivations
# self.waveform_sample_length = int(self.target_length * self.hopsize)
# if (self.config["balance_sampling_weight"]):
# self.samples_weight = np.loadtxt(
# self.config["balance_sampling_weight"], delimiter=","
# )
if "train" not in self.split:
self.mixup = 0.0
# self.freqm = 0
# self.timem = 0
def _relative_path_to_absolute_path(self, metadata, dataset_name):
root_path = self.get_dataset_root_path(dataset_name)
for i in range(len(metadata["data"])):
assert "wav" in metadata["data"][i].keys(), metadata["data"][i]
assert metadata["data"][i]["wav"][0] != "/", (
"The dataset metadata should only contain relative path to the audio file: "
+ str(metadata["data"][i]["wav"])
)
metadata["data"][i]["wav"] = os.path.join(
root_path, metadata["data"][i]["wav"]
)
return metadata
def build_dataset(self):
self.data = []
print("Build dataset split %s from %s" % (self.split, self.dataset_name))
if type(self.dataset_name) is str:
data_json = load_json(
self.get_dataset_metadata_path(self.dataset_name, key=self.split)
)
data_json = self._relative_path_to_absolute_path(
data_json, self.dataset_name
)
self.data = data_json["data"]
elif type(self.dataset_name) is list:
for dataset_name in self.dataset_name:
data_json = load_json(
self.get_dataset_metadata_path(dataset_name, key=self.split)
)
data_json = self._relative_path_to_absolute_path(
data_json, dataset_name
)
self.data += data_json["data"]
else:
raise Exception("Invalid data format")
print("Data size: {}".format(len(self.data)))
def build_dsp(self):
self.mel_basis = {}
self.hann_window = {}
self.filter_length = self.config["preprocessing"]["stft"]["filter_length"]
self.hop_length = self.config["preprocessing"]["stft"]["hop_length"]
self.win_length = self.config["preprocessing"]["stft"]["win_length"]
self.n_mel = self.config["preprocessing"]["mel"]["n_mel_channels"]
self.sampling_rate = self.config["preprocessing"]["audio"]["sampling_rate"]
self.mel_fmin = self.config["preprocessing"]["mel"]["mel_fmin"]
self.mel_fmax = self.config["preprocessing"]["mel"]["mel_fmax"]
self.STFT = Audio.stft.TacotronSTFT(
self.config["preprocessing"]["stft"]["filter_length"],
self.config["preprocessing"]["stft"]["hop_length"],
self.config["preprocessing"]["stft"]["win_length"],
self.config["preprocessing"]["mel"]["n_mel_channels"],
self.config["preprocessing"]["audio"]["sampling_rate"],
self.config["preprocessing"]["mel"]["mel_fmin"],
self.config["preprocessing"]["mel"]["mel_fmax"],
)
# self.stft_transform = torchaudio.transforms.Spectrogram(
# n_fft=1024, hop_length=160
# )
# self.melscale_transform = torchaudio.transforms.MelScale(
# sample_rate=16000, n_stft=1024 // 2 + 1, n_mels=64
# )
def build_id_to_label(self):
id2label = {}
id2num = {}
num2label = {}
class_label_indices_path = self.get_dataset_metadata_path(
dataset=self.config["data"]["class_label_indices"],
key="class_label_indices",
)
if class_label_indices_path is not None:
df = pd.read_csv(class_label_indices_path)
for _, row in df.iterrows():
index, mid, display_name = row["index"], row["mid"], row["display_name"]
id2label[mid] = display_name
id2num[mid] = index
num2label[index] = display_name
self.id2label, self.index_dict, self.num2label = id2label, id2num, num2label
else:
self.id2label, self.index_dict, self.num2label = {}, {}, {}
def resample(self, waveform, sr):
waveform = torchaudio.functional.resample(waveform, sr, self.sampling_rate)
return waveform
def normalize_wav(self, waveform):
waveform = waveform - np.mean(waveform)
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
return waveform * 0.5 # Manually limit the maximum amplitude into 0.5
def random_segment_wav(self, waveform, target_length):
waveform_length = waveform.shape[-1]
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
# Too short
if (waveform_length - target_length) <= 0:
return waveform, 0
for i in range(10):
random_start = int(self.random_uniform(0, waveform_length - target_length))
if torch.max(
torch.abs(waveform[:, random_start : random_start + target_length])
> 1e-4
):
break
return waveform[:, random_start : random_start + target_length], random_start
def pad_wav(self, waveform, target_length):
waveform_length = waveform.shape[-1]
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
if waveform_length == target_length:
return waveform
# Pad
temp_wav = np.zeros((1, target_length), dtype=np.float32)
if self.pad_wav_start_sample is None:
rand_start = int(self.random_uniform(0, target_length - waveform_length))
else:
rand_start = 0
temp_wav[:, rand_start : rand_start + waveform_length] = waveform
return temp_wav
def trim_wav(self, waveform):
if np.max(np.abs(waveform)) < 0.0001:
return waveform
def detect_leading_silence(waveform, threshold=0.0001):
chunk_size = 1000
waveform_length = waveform.shape[0]
start = 0
while start + chunk_size < waveform_length:
if np.max(np.abs(waveform[start : start + chunk_size])) < threshold:
start += chunk_size
else:
break
return start
def detect_ending_silence(waveform, threshold=0.0001):
chunk_size = 1000
waveform_length = waveform.shape[0]
start = waveform_length
while start - chunk_size > 0:
if np.max(np.abs(waveform[start - chunk_size : start])) < threshold:
start -= chunk_size
else:
break
if start == waveform_length:
return start
else:
return start + chunk_size
start = detect_leading_silence(waveform)
end = detect_ending_silence(waveform)
return waveform[start:end]
def read_wav_file(self, filename):
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
waveform, sr = torchaudio.load(filename)
waveform, random_start = self.random_segment_wav(
waveform, target_length=int(sr * self.duration)
)
waveform = self.resample(waveform, sr)
# random_start = int(random_start * (self.sampling_rate / sr))
waveform = waveform.numpy()[0, ...]
waveform = self.normalize_wav(waveform)
if self.trim_wav:
waveform = self.trim_wav(waveform)
waveform = waveform[None, ...]
waveform = self.pad_wav(
waveform, target_length=int(self.sampling_rate * self.duration)
)
return waveform, random_start
def read_audio_file(self, filename, filename2=None):
if os.path.exists(filename):
waveform, random_start = self.read_wav_file(filename)
else:
print(
'Non-fatal Warning [dataset.py]: The wav path "',
filename,
'" is not find in the metadata. Use empty waveform instead. This is normal in the inference process.',
)
target_length = int(self.sampling_rate * self.duration)
waveform = torch.zeros((1, target_length))
random_start = 0
# log_mel_spec, stft = self.wav_feature_extraction_torchaudio(waveform) # this line is faster, but this implementation is not aligned with HiFi-GAN
if not self.waveform_only:
log_mel_spec, stft = self.wav_feature_extraction(waveform)
else:
# Load waveform data only
# Use zero array to keep the format unified
log_mel_spec, stft = None, None
return log_mel_spec, stft, waveform, random_start
def get_sample_text_caption(self, datum, mix_datum, label_indices):
text = self.label_indices_to_text(datum, label_indices)
if mix_datum is not None:
text += " " + self.label_indices_to_text(mix_datum, label_indices)
return text
def mel_spectrogram_train(self, y):
if torch.min(y) < -1.0:
print("train min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("train max value is ", torch.max(y))
if self.mel_fmax not in self.mel_basis:
mel = librosa_mel_fn(
self.sampling_rate,
self.filter_length,
self.n_mel,
self.mel_fmin,
self.mel_fmax,
)
self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)] = (
torch.from_numpy(mel).float().to(y.device)
)
self.hann_window[str(y.device)] = torch.hann_window(self.win_length).to(
y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(
int((self.filter_length - self.hop_length) / 2),
int((self.filter_length - self.hop_length) / 2),
),
mode="reflect",
)
y = y.squeeze(1)
stft_spec = torch.stft(
y,
self.filter_length,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.hann_window[str(y.device)],
center=False,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
stft_spec = torch.abs(stft_spec)
mel = spectral_normalize_torch(
torch.matmul(
self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)], stft_spec
)
)
return mel[0], stft_spec[0]
# This one is significantly slower than "wav_feature_extraction_torchaudio" if num_worker > 1
def wav_feature_extraction(self, waveform):
waveform = waveform[0, ...]
waveform = torch.FloatTensor(waveform)
# log_mel_spec, stft, energy = Audio.tools.get_mel_from_wav(waveform, self.STFT)[0]
log_mel_spec, stft = self.mel_spectrogram_train(waveform.unsqueeze(0))
log_mel_spec = torch.FloatTensor(log_mel_spec.T)
stft = torch.FloatTensor(stft.T)
log_mel_spec, stft = self.pad_spec(log_mel_spec), self.pad_spec(stft)
return log_mel_spec, stft
# @profile
# def wav_feature_extraction_torchaudio(self, waveform):
# waveform = waveform[0, ...]
# waveform = torch.FloatTensor(waveform)
# stft = self.stft_transform(waveform)
# mel_spec = self.melscale_transform(stft)
# log_mel_spec = torch.log(mel_spec + 1e-7)
# log_mel_spec = torch.FloatTensor(log_mel_spec.T)
# stft = torch.FloatTensor(stft.T)
# log_mel_spec, stft = self.pad_spec(log_mel_spec), self.pad_spec(stft)
# return log_mel_spec, stft
def pad_spec(self, log_mel_spec):
n_frames = log_mel_spec.shape[0]
p = self.target_length - n_frames
# cut and pad
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
log_mel_spec = m(log_mel_spec)
elif p < 0:
log_mel_spec = log_mel_spec[0 : self.target_length, :]
if log_mel_spec.size(-1) % 2 != 0:
log_mel_spec = log_mel_spec[..., :-1]
return log_mel_spec
def _read_datum_caption(self, datum):
caption_keys = [x for x in datum.keys() if ("caption" in x)]
random_index = torch.randint(0, len(caption_keys), (1,))[0].item()
return datum[caption_keys[random_index]]
def _is_contain_caption(self, datum):
caption_keys = [x for x in datum.keys() if ("caption" in x)]
return len(caption_keys) > 0
def label_indices_to_text(self, datum, label_indices):
if self._is_contain_caption(datum):
return self._read_datum_caption(datum)
elif "label" in datum.keys():
name_indices = torch.where(label_indices > 0.1)[0]
# description_header = "This audio contains the sound of "
description_header = ""
labels = ""
for id, each in enumerate(name_indices):
if id == len(name_indices) - 1:
labels += "%s." % self.num2label[int(each)]
else:
labels += "%s, " % self.num2label[int(each)]
return description_header + labels
else:
return "" # TODO, if both label and caption are not provided, return empty string
def random_uniform(self, start, end):
val = torch.rand(1).item()
return start + (end - start) * val
def frequency_masking(self, log_mel_spec, freqm):
bs, freq, tsteps = log_mel_spec.size()
mask_len = int(self.random_uniform(freqm // 8, freqm))
mask_start = int(self.random_uniform(start=0, end=freq - mask_len))
log_mel_spec[:, mask_start : mask_start + mask_len, :] *= 0.0
return log_mel_spec
def time_masking(self, log_mel_spec, timem):
bs, freq, tsteps = log_mel_spec.size()
mask_len = int(self.random_uniform(timem // 8, timem))
mask_start = int(self.random_uniform(start=0, end=tsteps - mask_len))
log_mel_spec[:, :, mask_start : mask_start + mask_len] *= 0.0
return log_mel_spec
if __name__ == "__main__":
import torch
from tqdm import tqdm
from pytorch_lightning import seed_everything
from torch.utils.data import DataLoader
seed_everything(0)
def write_json(my_dict, fname):
# print("Save json file at "+fname)
json_str = json.dumps(my_dict)
with open(fname, "w") as json_file:
json_file.write(json_str)
def load_json(fname):
with open(fname, "r") as f:
data = json.load(f)
return data
config = yaml.load(
open(
"/mnt/bn/lqhaoheliu/project/audio_generation_diffusion/config/vae_48k_256/ds_8_kl_1.0_ch_16.yaml",
"r",
),
Loader=yaml.FullLoader,
)
add_ons = config["data"]["dataloader_add_ons"]
# load_json(data)
dataset = AudioDataset(
config=config, split="train", waveform_only=False, add_ons=add_ons
)
loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=True)
for cnt, each in tqdm(enumerate(loader)):
# print(each["waveform"].size(), each["log_mel_spec"].size())
# print(each['freq_energy_percentile'])
import ipdb
ipdb.set_trace()
# pass
|