File size: 6,976 Bytes
96e64e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import sys
sys.path.append('./BigVGAN')

import time
import torch
import torchaudio
import argparse
from tqdm import tqdm
import librosa
from BigVGAN import bigvgan
from BigVGAN.meldataset import get_mel_spectrogram
from model import OptimizedAudioRestorationModel


# Set the device handle macbooks with M1 chip

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Initialize BigVGAN model
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
    'nvidia/bigvgan_v2_24khz_100band_256x',
    use_cuda_kernel=False,
    force_download=False
).to(device)
bigvgan_model.remove_weight_norm()

def measure_gpu_memory():
    if device == 'cuda':
        torch.cuda.synchronize()
        return torch.cuda.max_memory_allocated() / (1024 ** 2)  # Convert to MB
    return 0



def apply_overlap_windowing_waveform(waveform, window_size_samples, overlap):
    step_size = int(window_size_samples * (1 - overlap))
    num_chunks = (waveform.shape[-1] - window_size_samples) // step_size + 1
    windows = []

    for i in range(num_chunks):
        start_idx = i * step_size
        end_idx = start_idx + window_size_samples
        chunk = waveform[..., start_idx:end_idx]
        windows.append(chunk)
    
    return torch.stack(windows)

def reconstruct_waveform_from_windows(windows, window_size_samples, overlap):
    step_size = int(window_size_samples * (1 - overlap))
    shape = windows.shape
    if len(shape) == 2:
        # windows.shape == (num_windows, window_len)
        num_windows, window_len = shape
        channels = 1
        windows = windows.unsqueeze(1)  # Now windows.shape == (num_windows, 1, window_len)
    elif len(shape) == 3:
        num_windows, channels, window_len = shape
    else:
        raise ValueError(f"Unexpected windows.shape: {windows.shape}")

    output_length = (num_windows - 1) * step_size + window_size_samples

    reconstructed = torch.zeros((channels, output_length))
    window_sums = torch.zeros((channels, output_length))

    for i in range(num_windows):
        start_idx = i * step_size
        end_idx = start_idx + window_len
        reconstructed[:, start_idx:end_idx] += windows[i]
        window_sums[:, start_idx:end_idx] += 1
    
    reconstructed = reconstructed / window_sums.clamp(min=1e-6)
    if channels == 1:
        reconstructed = reconstructed.squeeze(0)  # Remove channel dimension if single channel
    return reconstructed

def load_model(save_path):
    """
    Load the optimized audio restoration model.
    
    Parameters:
    - save_path: Path to the checkpoint file.
    """
    optimized_model = OptimizedAudioRestorationModel(device=device, bigvgan_model=bigvgan_model)
    state_dict = torch.load(save_path, map_location=device)

    if 'model_state_dict' in state_dict:
        state_dict = state_dict['model_state_dict']
    optimized_model.voice_restore.load_state_dict(state_dict, strict=True)

    return optimized_model

def restore_audio(model, input_path, output_path, steps=16, cfg_strength=0.5, window_size_sec=5.0, overlap=0.5):  
    # Load the audio file
    start_time = time.time()
    initial_gpu_memory = measure_gpu_memory()
    wav, sr = librosa.load(input_path, sr=24000, mono=True)
    wav = torch.FloatTensor(wav).unsqueeze(0)  # Shape: [1, num_samples]

    window_size_samples = int(window_size_sec * sr)
    step_size = int(window_size_samples * (1 - overlap))

    # Apply overlapping windowing to the waveform
    wav_windows = apply_overlap_windowing_waveform(wav, window_size_samples, overlap)

    restored_wav_windows = []

    for wav_window in tqdm(wav_windows):
        wav_window = wav_window.to(device)  # Shape: [1, window_size_samples]

        # Convert to Mel-spectrogram
        processed_mel = get_mel_spectrogram(wav_window, bigvgan_model.h).to(device)

        # Restore audio
        with torch.no_grad():
            with torch.autocast(device):
                restored_mel = model.voice_restore.sample(processed_mel.transpose(1, 2), steps=steps, cfg_strength=cfg_strength)
                restored_mel = restored_mel.squeeze(0).transpose(0, 1)

        # Convert restored mel-spectrogram to waveform
        with torch.no_grad():
            with torch.autocast(device):
                restored_wav = bigvgan_model(restored_mel.unsqueeze(0)).squeeze(0).float().cpu()  # Shape: [num_samples]
        
        # Debug: Print shapes
        # print(f"restored_wav.shape: {restored_wav.shape}")
        
        restored_wav_windows.append(restored_wav)
        del wav_window, processed_mel, restored_mel, restored_wav
        torch.cuda.empty_cache()

    restored_wav_windows = torch.stack(restored_wav_windows)  # Shape: [num_windows, num_samples]

    # Debug: Print shapes
    # print(f"restored_wav_windows.shape: {restored_wav_windows.shape}")

    # Reconstruct the full waveform from the processed windows
    restored_wav = reconstruct_waveform_from_windows(restored_wav_windows, window_size_samples, overlap)

    # Ensure the restored_wav has correct dimensions for saving
    if restored_wav.dim() == 1:
        restored_wav = restored_wav.unsqueeze(0)  # Shape: [1, num_samples]

    # Save the restored audio
    torchaudio.save(output_path, restored_wav, 24000)

    end_time = time.time()
    total_time = end_time - start_time
    peak_gpu_memory = measure_gpu_memory()
    gpu_memory_used = peak_gpu_memory - initial_gpu_memory

    print(f"Total inference time: {total_time:.2f} seconds")
    print(f"Peak GPU memory usage: {peak_gpu_memory:.2f} MB")
    print(f"GPU memory used: {gpu_memory_used:.2f} MB")

if __name__ == "__main__":
    # Argument parser setup
    parser = argparse.ArgumentParser(description="Audio restoration using OptimizedAudioRestorationModel for long-form audio.")
    parser.add_argument('--checkpoint', type=str, required=True, help="Path to the checkpoint file")
    parser.add_argument('--input', type=str, required=True, help="Path to the input audio file")
    parser.add_argument('--output', type=str, required=True, help="Path to save the restored audio file")
    parser.add_argument('--steps', type=int, default=16, help="Number of sampling steps")
    parser.add_argument('--cfg_strength', type=float, default=0.5, help="CFG strength value")
    parser.add_argument('--window_size_sec', type=float, default=5.0, help="Window size in seconds for overlapping")
    parser.add_argument('--overlap', type=float, default=0.5, help="Overlap ratio for windowing")

    # Parse arguments
    args = parser.parse_args()

    # Load the optimized model
    optimized_model = load_model(args.checkpoint)

    if device == 'cuda':
        optimized_model.bfloat16()
    optimized_model.eval()
    optimized_model.to(device)

    # Use the model to restore audio
    restore_audio(
        optimized_model, 
        args.input, 
        args.output, 
        steps=args.steps, 
        cfg_strength=args.cfg_strength, 
        window_size_sec=args.window_size_sec, 
        overlap=args.overlap
    )