File size: 17,531 Bytes
96e64e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import json
from pathlib import Path
from typing import Optional, Union, Dict
import torch
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
# import activations
from . import activations
from .utils import init_weights, get_padding
from .alias_free_activation.torch.act import Activation1d as TorchActivation1d
from .env import AttrDict
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
def load_hparams_from_json(path) -> AttrDict:
with open(path) as f:
data = f.read()
return AttrDict(json.loads(data))
class AMPBlock1(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for d in dilation
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
)
for _ in range(len(dilation))
]
)
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(
self.convs2
) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import (
Activation1d as CudaActivation1d,
)
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.Snake(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif activation == "snakebeta":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.SnakeBeta(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for d in dilation
]
)
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import (
Activation1d as CudaActivation1d,
)
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.Snake(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif activation == "snakebeta":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.SnakeBeta(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class BigVGAN(
torch.nn.Module,
PyTorchModelHubMixin,
library_name="bigvgan",
repo_url="https://github.com/NVIDIA/BigVGAN",
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
pipeline_tag="audio-to-audio",
license="mit",
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
):
"""
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
Args:
h (AttrDict): Hyperparameters.
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
Note:
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
"""
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
super().__init__()
self.h = h
self.h["use_cuda_kernel"] = use_cuda_kernel
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import (
Activation1d as CudaActivation1d,
)
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# Pre-conv
self.conv_pre = weight_norm(
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
)
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
if h.resblock == "1":
resblock_class = AMPBlock1
elif h.resblock == "2":
resblock_class = AMPBlock2
else:
raise ValueError(
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}"
)
# Transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
nn.ModuleList(
[
weight_norm(
ConvTranspose1d(
h.upsample_initial_channel // (2**i),
h.upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
]
)
)
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
):
self.resblocks.append(
resblock_class(h, ch, k, d, activation=h.activation)
)
# Post-conv
activation_post = (
activations.Snake(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snake"
else (
activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snakebeta"
else None
)
)
if activation_post is None:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
self.activation_post = Activation1d(activation=activation_post)
# Whether to use bias for the final conv_post. Default to True for backward compatibility
self.use_bias_at_final = h.get("use_bias_at_final", True)
self.conv_post = weight_norm(
Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
)
# Weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
# Final tanh activation. Defaults to True for backward compatibility
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
def forward(self, x):
# Pre-conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# Upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# Post-conv
x = self.activation_post(x)
x = self.conv_post(x)
# Final tanh activation
if self.use_tanh_at_final:
x = torch.tanh(x)
else:
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
return x
def remove_weight_norm(self):
try:
print("Removing weight norm...")
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
except ValueError:
print("[INFO] Model already removed weight norm. Skipping!")
pass
# Additional methods for huggingface_hub support
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights and config.json from a Pytorch model to a local directory."""
model_path = save_directory / "bigvgan_generator.pt"
torch.save({"generator": self.state_dict()}, model_path)
config_path = save_directory / "config.json"
with open(config_path, "w") as config_file:
json.dump(self.h, config_file, indent=4)
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: str,
cache_dir: str,
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu", # Additional argument
strict: bool = False, # Additional argument
use_cuda_kernel: bool = False,
**model_kwargs,
):
"""Load Pytorch pretrained weights and return the loaded model."""
# Download and load hyperparameters (h) used by BigVGAN
if os.path.isdir(model_id):
print("Loading config.json from local directory")
config_file = os.path.join(model_id, "config.json")
else:
config_file = hf_hub_download(
repo_id=model_id,
filename="config.json",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
h = load_hparams_from_json(config_file)
# instantiate BigVGAN using h
if use_cuda_kernel:
print(
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
)
print(
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
)
print(
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
)
model = cls(h, use_cuda_kernel=use_cuda_kernel)
# Download and load pretrained generator weight
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, "bigvgan_generator.pt")
else:
print(f"Loading weights from {model_id}")
model_file = hf_hub_download(
repo_id=model_id,
filename="bigvgan_generator.pt",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
checkpoint_dict = torch.load(model_file, map_location=map_location)
try:
model.load_state_dict(checkpoint_dict["generator"])
except RuntimeError:
print(
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
)
model.remove_weight_norm()
model.load_state_dict(checkpoint_dict["generator"])
return model
|