xlm-roberta-base-finetuned-Parallel-mlm-0.15-base-27OCT

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 0.0998 100 1.4204
No log 0.1997 200 1.3432
No log 0.2995 300 1.3054
No log 0.3993 400 1.2756
1.5915 0.4992 500 1.2552
1.5915 0.5990 600 1.2327
1.5915 0.6988 700 1.2152
1.5915 0.7987 800 1.2012
1.5915 0.8985 900 1.2002
1.3946 0.9983 1000 1.1854
1.3946 1.0982 1100 1.1824
1.3946 1.1980 1200 1.1723
1.3946 1.2979 1300 1.1589
1.3946 1.3977 1400 1.1490
1.321 1.4975 1500 1.1387
1.321 1.5974 1600 1.1356
1.321 1.6972 1700 1.1252
1.321 1.7970 1800 1.1259
1.321 1.8969 1900 1.1182
1.2735 1.9967 2000 1.1144
1.2735 2.0965 2100 1.0966
1.2735 2.1964 2200 1.1005
1.2735 2.2962 2300 1.0952
1.2735 2.3960 2400 1.0935
1.235 2.4959 2500 1.0840
1.235 2.5957 2600 1.0766
1.235 2.6955 2700 1.0719
1.235 2.7954 2800 1.0665
1.235 2.8952 2900 1.0644
1.1954 2.9950 3000 1.0656
1.1954 3.0949 3100 1.0574
1.1954 3.1947 3200 1.0495
1.1954 3.2945 3300 1.0475
1.1954 3.3944 3400 1.0452
1.1707 3.4942 3500 1.0399
1.1707 3.5940 3600 1.0363
1.1707 3.6939 3700 1.0291
1.1707 3.7937 3800 1.0338
1.1707 3.8936 3900 1.0348
1.1509 3.9934 4000 1.0319
1.1509 4.0932 4100 1.0219
1.1509 4.1931 4200 1.0214
1.1509 4.2929 4300 1.0161
1.1509 4.3927 4400 1.0158
1.1275 4.4926 4500 1.0153
1.1275 4.5924 4600 1.0067
1.1275 4.6922 4700 1.0058
1.1275 4.7921 4800 1.0097
1.1275 4.8919 4900 1.0037
1.1127 4.9917 5000 1.0048
1.1127 5.0916 5100 1.0022
1.1127 5.1914 5200 0.9947
1.1127 5.2912 5300 0.9947
1.1127 5.3911 5400 0.9907
1.0944 5.4909 5500 0.9909
1.0944 5.5907 5600 0.9861
1.0944 5.6906 5700 0.9858
1.0944 5.7904 5800 0.9861
1.0944 5.8902 5900 0.9791
1.0847 5.9901 6000 0.9787
1.0847 6.0899 6100 0.9744
1.0847 6.1897 6200 0.9752
1.0847 6.2896 6300 0.9712
1.0847 6.3894 6400 0.9723
1.0662 6.4893 6500 0.9706
1.0662 6.5891 6600 0.9688
1.0662 6.6889 6700 0.9692
1.0662 6.7888 6800 0.9655
1.0662 6.8886 6900 0.9637
1.0559 6.9884 7000 0.9629
1.0559 7.0883 7100 0.9618
1.0559 7.1881 7200 0.9622
1.0559 7.2879 7300 0.9605
1.0559 7.3878 7400 0.9560
1.0439 7.4876 7500 0.9562
1.0439 7.5874 7600 0.9566
1.0439 7.6873 7700 0.9515
1.0439 7.7871 7800 0.9514
1.0439 7.8869 7900 0.9542
1.0358 7.9868 8000 0.9504
1.0358 8.0866 8100 0.9502
1.0358 8.1864 8200 0.9494
1.0358 8.2863 8300 0.9451
1.0358 8.3861 8400 0.9461
1.0242 8.4859 8500 0.9447
1.0242 8.5858 8600 0.9455
1.0242 8.6856 8700 0.9441
1.0242 8.7854 8800 0.9399
1.0242 8.8853 8900 0.9410
1.0198 8.9851 9000 0.9391
1.0198 9.0850 9100 0.9390
1.0198 9.1848 9200 0.9379
1.0198 9.2846 9300 0.9382
1.0198 9.3845 9400 0.9377
1.0094 9.4843 9500 0.9363
1.0094 9.5841 9600 0.9354
1.0094 9.6840 9700 0.9353
1.0094 9.7838 9800 0.9351
1.0094 9.8836 9900 0.9342
1.011 9.9835 10000 0.9339

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.1.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
278M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for iwan-rg/XLM-Roberta-base-Finetuned-EN-AR-Parallel

Finetuned
(2715)
this model