metadata
base_model: BAAI/bge-base-en-v1.5
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:208
- loss:BatchSemiHardTripletLoss
widget:
- source_sentence: |
Name : Nordiska Hosting Collective
Category: Cloud Storage Solutions, Data Security Services
Department: IT Operations
Location: Helsinki, Finland
Amount: 1439.57
Card: Annual Data Management Plan
Trip Name: unknown
sentences:
- |
Name : Allegro Integrations
Category: Payment Processing Solutions, Financial Technology Services
Department: Finance
Location: Dublin, Ireland
Amount: 1298.75
Card: Bi-annual Financial Systems Audit
Trip Name: unknown
- |
Name : FastLane Transport
Category: Logistics & Transport, Vehicle Services
Department: Sales
Location: Miami, FL
Amount: 158.25
Card: Sales Travel Expenses
Trip Name: unknown
- |
Name : Aperio Global Insights
Category: Strategic Business Consulting, Data Analytics Services
Department: Finance
Location: Chicago, IL
Amount: 3456.78
Card: Global Market Expansion Evaluation
Trip Name: unknown
- source_sentence: |
Name : Pixwise Interactive Solutions
Category: Creative Services, Technology Solutions
Department: Marketing
Location: Munich, Germany
Amount: 1052.75
Card: Digital Innovation Campaign
Trip Name: unknown
sentences:
- |
Name : GlobalFitness Unity
Category: Community Health Programs, Corporate Wellness Solutions
Department: Office Administration
Location: Copenhagen, Denmark
Amount: 987.56
Card: Office Health and Wellness Partnership
Trip Name: unknown
- |
Name : Prometeo Analytics
Category: Data Analysis Services, Video Production Agency
Department: Marketing
Location: Buenos Aires, Argentina
Amount: 1263.89
Card: Influencer Content Strategy
Trip Name: unknown
- |
Name : Global Talent Network
Category: HR Consultancy Services, Corporate Event Organizers
Department: HR
Location: Los Angeles, CA
Amount: 1375.65
Card: Leadership Summit Coordination
Trip Name: unknown
- source_sentence: |
Name : Wellness Haven
Category: Employee Health Programs, Professional Development
Department: HR
Location: Munich, Germany
Amount: 762.35
Card: Corporate Wellness Initiatives
Trip Name: unknown
sentences:
- |
Name : Wong & Lim
Category: Technical Equipment Services, Facility Services
Department: Office Administration
Location: Berlin, Germany
Amount: 458.29
Card: Monthly Equipment Care Program
Trip Name: unknown
- |
Name : Infinity Creations
Category: Design Services, Promotional Materials
Department: Sales
Location: Toronto, Canada
Amount: 1583.47
Card: Quarterly Sales Campaign
Trip Name: unknown
- |
Name : Gartner & Associates
Category: Consulting, Business Services
Department: Legal
Location: San Francisco, CA
Amount: 5000.0
Card: Legal Consultation Fund
Trip Name: unknown
- source_sentence: |
Name : Valiant Solutions
Category: Workshop Coordination, Training Services
Department: Engineering
Location: Lisbon, Portugal
Amount: 499.75
Card: Quarterly Skill Development
Trip Name: unknown
sentences:
- |
Name : TransLogix Solutions
Category: Logistics Services, Corporate Travel Management
Department: Sales
Location: Berlin, Germany
Amount: 485.67
Card: Quarterly Client Visit and Logistics Coordination
Trip Name: unknown
- |
Name : NexaCloud Technologies
Category: Implement Services, Cloud Solutions
Department: IT Operations
Location: Berlin, Germany
Amount: 1490.65
Card: Cloud Optimization Initiative
Trip Name: unknown
- |
Name : SecureStream Analytics
Category: Data Processing Services, IT Security Solutions
Department: Information Security
Location: Chicago, IL
Amount: 1345.67
Card: Integrated Systems Analysis
Trip Name: unknown
- source_sentence: |
Name : CloudFlare Inc.
Category: Internet & Network Services, SaaS
Department: IT Operations
Location: New York, NY
Amount: 2000.0
Card: Annual Cloud Services Budget
Trip Name: unknown
sentences:
- |
Name : TelecomMastery Solutions
Category: Cloud Infrastructure & Hosting, Telecommunications Services
Department: IT Operations
Location: Zurich, Switzerland
Amount: 1583.45
Card: Global Connectivity Enhancement
Trip Name: unknown
- |
Name : Versatile Systems Ltd.
Category: Office Management Solutions, Software Solutions
Department: Office Administration
Location: Tokyo, Japan
Amount: 845.67
Card: Integrated Office Infrastructure
Trip Name: unknown
- |
Name : Nimbus Streamline
Category: Cloud Services, Internet Infrastructure
Department: IT Operations
Location: Berlin, Germany
Amount: 1376.49
Card: Distributed Server Management
Trip Name: unknown
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: ramp finetune eval
type: ramp-finetune-eval
metrics:
- type: cosine_accuracy
value: 0
name: Cosine Accuracy
- type: dot_accuracy
value: 0
name: Dot Accuracy
- type: manhattan_accuracy
value: 0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0
name: Euclidean Accuracy
- type: max_accuracy
value: 0
name: Max Accuracy
- type: cosine_accuracy
value: 0
name: Cosine Accuracy
- type: dot_accuracy
value: 0
name: Dot Accuracy
- type: manhattan_accuracy
value: 0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0
name: Euclidean Accuracy
- type: max_accuracy
value: 0
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: ramp finetune test
type: ramp-finetune-test
metrics:
- type: cosine_accuracy
value: 0
name: Cosine Accuracy
- type: dot_accuracy
value: 0
name: Dot Accuracy
- type: manhattan_accuracy
value: 0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0
name: Euclidean Accuracy
- type: max_accuracy
value: 0
name: Max Accuracy
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ivanleomk/finetuned-bge-bai")
# Run inference
sentences = [
'\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n',
'\nName : TelecomMastery Solutions\nCategory: Cloud Infrastructure & Hosting, Telecommunications Services\nDepartment: IT Operations\nLocation: Zurich, Switzerland\nAmount: 1583.45\nCard: Global Connectivity Enhancement\nTrip Name: unknown\n',
'\nName : Nimbus Streamline\nCategory: Cloud Services, Internet Infrastructure\nDepartment: IT Operations\nLocation: Berlin, Germany\nAmount: 1376.49\nCard: Distributed Server Management\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
ramp-finetune-eval
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 0.0 |
euclidean_accuracy | 0.0 |
max_accuracy | 0.0 |
Triplet
- Dataset:
ramp-finetune-eval
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 0.0 |
euclidean_accuracy | 0.0 |
max_accuracy | 0.0 |
Triplet
- Dataset:
ramp-finetune-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 0.0 |
euclidean_accuracy | 0.0 |
max_accuracy | 0.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 208 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 208 samples:
sentence label type string int details - min: 33 tokens
- mean: 39.66 tokens
- max: 48 tokens
- 0: ~4.81%
- 1: ~5.29%
- 2: ~6.25%
- 3: ~2.40%
- 4: ~3.85%
- 5: ~4.33%
- 6: ~3.85%
- 7: ~2.40%
- 8: ~4.81%
- 9: ~3.37%
- 10: ~3.85%
- 11: ~3.85%
- 12: ~4.81%
- 13: ~4.81%
- 14: ~5.29%
- 15: ~3.37%
- 16: ~4.81%
- 17: ~4.33%
- 18: ~3.85%
- 19: ~1.92%
- 20: ~2.88%
- 21: ~2.88%
- 22: ~3.37%
- 23: ~0.96%
- 24: ~4.33%
- 25: ~2.40%
- 26: ~0.96%
- Samples:
sentence label
Name : Global Insights Group
Category: Subscriptions & Memberships, Data Services & Analytics
Department: Marketing
Location: London, UK
Amount: 1245.67
Card: Marketing Intelligence Fund
Trip Name: unknown0
Name : CyberGuard Provisions
Category: Security Software Solutions, Data Protection Services
Department: Information Security
Location: San Francisco, CA
Amount: 879.92
Card: Digital Fortress Action Plan
Trip Name: unknown1
Name : Apex Innovations Group
Category: Business Consulting, Training Services
Department: Executive
Location: Sydney, Australia
Amount: 1575.34
Card: Leadership Development Program
Trip Name: unknown2
- Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 66 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 66 samples:
sentence label type string int details - min: 35 tokens
- mean: 39.89 tokens
- max: 45 tokens
- 0: ~1.52%
- 1: ~4.55%
- 2: ~4.55%
- 3: ~7.58%
- 5: ~6.06%
- 6: ~4.55%
- 7: ~1.52%
- 8: ~3.03%
- 9: ~1.52%
- 10: ~6.06%
- 11: ~1.52%
- 13: ~4.55%
- 14: ~4.55%
- 17: ~6.06%
- 18: ~4.55%
- 19: ~6.06%
- 20: ~3.03%
- 21: ~1.52%
- 22: ~7.58%
- 23: ~7.58%
- 24: ~3.03%
- 25: ~4.55%
- 26: ~4.55%
- Samples:
sentence label
Name : Skyline Digital Solutions
Category: Cloud Management Services, Internet & Network Services
Department: IT Operations
Location: Sydney, Australia
Amount: 1128.37
Card: Global Networking Project
Trip Name: unknown14
Name : Global Assurance Solutions
Category: Enterprise Risk Management, Strategic Business Advisory
Department: Finance
Location: Zurich, Switzerland
Amount: 1358.92
Card: Comprehensive Risk Assessment Framework
Trip Name: unknown6
Name : Nihon Global Ventures
Category: Consulting Services, Technology Implementation
Department: IT Operations
Location: Tokyo, Japan
Amount: 1453.17
Card: Network Optimization Program
Trip Name: unknown18
- Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | ramp-finetune-eval_max_accuracy | ramp-finetune-test_max_accuracy |
---|---|---|---|
0 | 0 | 0.0 | - |
1.0 | 13 | - | 0.0 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}