--- base_model: BAAI/bge-base-en-v1.5 library_name: sentence-transformers metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:208 - loss:BatchSemiHardTripletLoss widget: - source_sentence: ' Name : Nordiska Hosting Collective Category: Cloud Storage Solutions, Data Security Services Department: IT Operations Location: Helsinki, Finland Amount: 1439.57 Card: Annual Data Management Plan Trip Name: unknown ' sentences: - ' Name : Allegro Integrations Category: Payment Processing Solutions, Financial Technology Services Department: Finance Location: Dublin, Ireland Amount: 1298.75 Card: Bi-annual Financial Systems Audit Trip Name: unknown ' - ' Name : FastLane Transport Category: Logistics & Transport, Vehicle Services Department: Sales Location: Miami, FL Amount: 158.25 Card: Sales Travel Expenses Trip Name: unknown ' - ' Name : Aperio Global Insights Category: Strategic Business Consulting, Data Analytics Services Department: Finance Location: Chicago, IL Amount: 3456.78 Card: Global Market Expansion Evaluation Trip Name: unknown ' - source_sentence: ' Name : Pixwise Interactive Solutions Category: Creative Services, Technology Solutions Department: Marketing Location: Munich, Germany Amount: 1052.75 Card: Digital Innovation Campaign Trip Name: unknown ' sentences: - ' Name : GlobalFitness Unity Category: Community Health Programs, Corporate Wellness Solutions Department: Office Administration Location: Copenhagen, Denmark Amount: 987.56 Card: Office Health and Wellness Partnership Trip Name: unknown ' - ' Name : Prometeo Analytics Category: Data Analysis Services, Video Production Agency Department: Marketing Location: Buenos Aires, Argentina Amount: 1263.89 Card: Influencer Content Strategy Trip Name: unknown ' - ' Name : Global Talent Network Category: HR Consultancy Services, Corporate Event Organizers Department: HR Location: Los Angeles, CA Amount: 1375.65 Card: Leadership Summit Coordination Trip Name: unknown ' - source_sentence: ' Name : Wellness Haven Category: Employee Health Programs, Professional Development Department: HR Location: Munich, Germany Amount: 762.35 Card: Corporate Wellness Initiatives Trip Name: unknown ' sentences: - ' Name : Wong & Lim Category: Technical Equipment Services, Facility Services Department: Office Administration Location: Berlin, Germany Amount: 458.29 Card: Monthly Equipment Care Program Trip Name: unknown ' - ' Name : Infinity Creations Category: Design Services, Promotional Materials Department: Sales Location: Toronto, Canada Amount: 1583.47 Card: Quarterly Sales Campaign Trip Name: unknown ' - ' Name : Gartner & Associates Category: Consulting, Business Services Department: Legal Location: San Francisco, CA Amount: 5000.0 Card: Legal Consultation Fund Trip Name: unknown ' - source_sentence: ' Name : Valiant Solutions Category: Workshop Coordination, Training Services Department: Engineering Location: Lisbon, Portugal Amount: 499.75 Card: Quarterly Skill Development Trip Name: unknown ' sentences: - ' Name : TransLogix Solutions Category: Logistics Services, Corporate Travel Management Department: Sales Location: Berlin, Germany Amount: 485.67 Card: Quarterly Client Visit and Logistics Coordination Trip Name: unknown ' - ' Name : NexaCloud Technologies Category: Implement Services, Cloud Solutions Department: IT Operations Location: Berlin, Germany Amount: 1490.65 Card: Cloud Optimization Initiative Trip Name: unknown ' - ' Name : SecureStream Analytics Category: Data Processing Services, IT Security Solutions Department: Information Security Location: Chicago, IL Amount: 1345.67 Card: Integrated Systems Analysis Trip Name: unknown ' - source_sentence: ' Name : CloudFlare Inc. Category: Internet & Network Services, SaaS Department: IT Operations Location: New York, NY Amount: 2000.0 Card: Annual Cloud Services Budget Trip Name: unknown ' sentences: - ' Name : TelecomMastery Solutions Category: Cloud Infrastructure & Hosting, Telecommunications Services Department: IT Operations Location: Zurich, Switzerland Amount: 1583.45 Card: Global Connectivity Enhancement Trip Name: unknown ' - ' Name : Versatile Systems Ltd. Category: Office Management Solutions, Software Solutions Department: Office Administration Location: Tokyo, Japan Amount: 845.67 Card: Integrated Office Infrastructure Trip Name: unknown ' - ' Name : Nimbus Streamline Category: Cloud Services, Internet Infrastructure Department: IT Operations Location: Berlin, Germany Amount: 1376.49 Card: Distributed Server Management Trip Name: unknown ' model-index: - name: SentenceTransformer based on BAAI/bge-base-en-v1.5 results: - task: type: triplet name: Triplet dataset: name: ramp finetune eval type: ramp-finetune-eval metrics: - type: cosine_accuracy value: 0.0 name: Cosine Accuracy - type: dot_accuracy value: 0.0 name: Dot Accuracy - type: manhattan_accuracy value: 0.0 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.0 name: Euclidean Accuracy - type: max_accuracy value: 0.0 name: Max Accuracy - type: cosine_accuracy value: 0.0 name: Cosine Accuracy - type: dot_accuracy value: 0.0 name: Dot Accuracy - type: manhattan_accuracy value: 0.0 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.0 name: Euclidean Accuracy - type: max_accuracy value: 0.0 name: Max Accuracy - task: type: triplet name: Triplet dataset: name: ramp finetune test type: ramp-finetune-test metrics: - type: cosine_accuracy value: 0.0 name: Cosine Accuracy - type: dot_accuracy value: 0.0 name: Dot Accuracy - type: manhattan_accuracy value: 0.0 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.0 name: Euclidean Accuracy - type: max_accuracy value: 0.0 name: Max Accuracy --- # SentenceTransformer based on BAAI/bge-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ivanleomk/finetuned-bge-bai") # Run inference sentences = [ '\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n', '\nName : TelecomMastery Solutions\nCategory: Cloud Infrastructure & Hosting, Telecommunications Services\nDepartment: IT Operations\nLocation: Zurich, Switzerland\nAmount: 1583.45\nCard: Global Connectivity Enhancement\nTrip Name: unknown\n', '\nName : Nimbus Streamline\nCategory: Cloud Services, Internet Infrastructure\nDepartment: IT Operations\nLocation: Berlin, Germany\nAmount: 1376.49\nCard: Distributed Server Management\nTrip Name: unknown\n', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `ramp-finetune-eval` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:--------| | cosine_accuracy | 0.0 | | dot_accuracy | 0.0 | | manhattan_accuracy | 0.0 | | euclidean_accuracy | 0.0 | | **max_accuracy** | **0.0** | #### Triplet * Dataset: `ramp-finetune-eval` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:--------| | cosine_accuracy | 0.0 | | dot_accuracy | 0.0 | | manhattan_accuracy | 0.0 | | euclidean_accuracy | 0.0 | | **max_accuracy** | **0.0** | #### Triplet * Dataset: `ramp-finetune-test` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:--------| | cosine_accuracy | 0.0 | | dot_accuracy | 0.0 | | manhattan_accuracy | 0.0 | | euclidean_accuracy | 0.0 | | **max_accuracy** | **0.0** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 208 training samples * Columns: sentence and label * Approximate statistics based on the first 208 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
Name : Global Insights Group
Category: Subscriptions & Memberships, Data Services & Analytics
Department: Marketing
Location: London, UK
Amount: 1245.67
Card: Marketing Intelligence Fund
Trip Name: unknown
| 0 | |
Name : CyberGuard Provisions
Category: Security Software Solutions, Data Protection Services
Department: Information Security
Location: San Francisco, CA
Amount: 879.92
Card: Digital Fortress Action Plan
Trip Name: unknown
| 1 | |
Name : Apex Innovations Group
Category: Business Consulting, Training Services
Department: Executive
Location: Sydney, Australia
Amount: 1575.34
Card: Leadership Development Program
Trip Name: unknown
| 2 | * Loss: [BatchSemiHardTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 66 evaluation samples * Columns: sentence and label * Approximate statistics based on the first 66 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------| |
Name : Skyline Digital Solutions
Category: Cloud Management Services, Internet & Network Services
Department: IT Operations
Location: Sydney, Australia
Amount: 1128.37
Card: Global Networking Project
Trip Name: unknown
| 14 | |
Name : Global Assurance Solutions
Category: Enterprise Risk Management, Strategic Business Advisory
Department: Finance
Location: Zurich, Switzerland
Amount: 1358.92
Card: Comprehensive Risk Assessment Framework
Trip Name: unknown
| 6 | |
Name : Nihon Global Ventures
Category: Consulting Services, Technology Implementation
Department: IT Operations
Location: Tokyo, Japan
Amount: 1453.17
Card: Network Optimization Program
Trip Name: unknown
| 18 | * Loss: [BatchSemiHardTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | ramp-finetune-eval_max_accuracy | ramp-finetune-test_max_accuracy | |:-----:|:----:|:-------------------------------:|:-------------------------------:| | 0 | 0 | 0.0 | - | | 1.0 | 13 | - | 0.0 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Accelerate: 0.34.2 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### BatchSemiHardTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```