File size: 13,778 Bytes
476803e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
#
# Source code: https://github.com/davidmrau/mixture-of-experts
#
# Sparsely-Gated Mixture-of-Experts Layers.
# See "Outrageously Large Neural Networks"
# https://arxiv.org/abs/1701.06538
#
# Author: David Rau
#
# The code is based on the TensorFlow implementation:
# https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/expert_utils.py
import torch
import torch.nn as nn
from torch.distributions.normal import Normal
from copy import deepcopy
import numpy as np
from utils import Mlp as MLP
class SparseDispatcher(object):
"""Helper for implementing a mixture of experts.
The purpose of this class is to create input minibatches for the
experts and to combine the results of the experts to form a unified
output tensor.
There are two functions:
dispatch - take an input Tensor and create input Tensors for each expert.
combine - take output Tensors from each expert and form a combined output
Tensor. Outputs from different experts for the same batch element are
summed together, weighted by the provided "gates".
The class is initialized with a "gates" Tensor, which specifies which
batch elements go to which experts, and the weights to use when combining
the outputs. Batch element b is sent to expert e iff gates[b, e] != 0.
The inputs and outputs are all two-dimensional [batch, depth].
Caller is responsible for collapsing additional dimensions prior to
calling this class and reshaping the output to the original shape.
See common_layers.reshape_like().
Example use:
gates: a float32 `Tensor` with shape `[batch_size, num_experts]`
inputs: a float32 `Tensor` with shape `[batch_size, input_size]`
experts: a list of length `num_experts` containing sub-networks.
dispatcher = SparseDispatcher(num_experts, gates)
expert_inputs = dispatcher.dispatch(inputs)
expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)]
outputs = dispatcher.combine(expert_outputs)
The preceding code sets the output for a particular example b to:
output[b] = Sum_i(gates[b, i] * experts[i](inputs[b]))
This class takes advantage of sparsity in the gate matrix by including in the
`Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`.
"""
def __init__(self, num_experts, gates):
"""Create a SparseDispatcher."""
self._gates = gates
self._num_experts = num_experts
# sort experts
sorted_experts, index_sorted_experts = torch.nonzero(gates).sort(0)
# drop indices
_, self._expert_index = sorted_experts.split(1, dim=1)
# get according batch index for each expert
self._batch_index = torch.nonzero(gates)[index_sorted_experts[:, 1], 0]
# calculate num samples that each expert gets
self._part_sizes = (gates > 0).sum(0).tolist()
# expand gates to match with self._batch_index
gates_exp = gates[self._batch_index.flatten()]
self._nonzero_gates = torch.gather(gates_exp, 1, self._expert_index)
def dispatch(self, inp):
"""Create one input Tensor for each expert.
The `Tensor` for a expert `i` contains the slices of `inp` corresponding
to the batch elements `b` where `gates[b, i] > 0`.
Args:
inp: a `Tensor` of shape "[batch_size, <extra_input_dims>]`
Returns:
a list of `num_experts` `Tensor`s with shapes
`[expert_batch_size_i, <extra_input_dims>]`.
"""
# assigns samples to experts whose gate is nonzero
# expand according to batch index so we can just split by _part_sizes
inp_exp = inp[self._batch_index].squeeze(1)
return torch.split(inp_exp, self._part_sizes, dim=0)
def combine(self, expert_out, multiply_by_gates=True, cnn_combine=None):
"""Sum together the expert output, weighted by the gates.
The slice corresponding to a particular batch element `b` is computed
as the sum over all experts `i` of the expert output, weighted by the
corresponding gate values. If `multiply_by_gates` is set to False, the
gate values are ignored.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean
Returns:
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
"""
# apply exp to expert outputs, so we are not longer in log space
stitched = torch.cat(expert_out, 0)
if multiply_by_gates:
stitched = stitched.mul(self._nonzero_gates.unsqueeze(1))
zeros = torch.zeros((self._gates.size(0),) + expert_out[-1].shape[1:],
requires_grad=True, device=stitched.device)
# combine samples that have been processed by the same k experts
if cnn_combine is not None:
return self.smartly_combine(stitched, cnn_combine)
combined = zeros.index_add(0, self._batch_index, stitched.float())
return combined
def smartly_combine(self, stitched, cnn_combine):
idxes = []
for i in self._batch_index.unique():
idx = (self._batch_index == i).nonzero().squeeze(1)
idxes.append(idx)
idxes = torch.stack(idxes)
return cnn_combine(stitched[idxes]).squeeze(1)
def expert_to_gates(self):
"""Gate values corresponding to the examples in the per-expert `Tensor`s.
Returns:
a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32`
and shapes `[expert_batch_size_i]`
"""
# split nonzero gates for each expert
return torch.split(self._nonzero_gates, self._part_sizes, dim=0)
def build_experts(experts_cfg, default_cfg, num_experts):
experts_cfg = deepcopy(experts_cfg)
if experts_cfg is None:
# old build way
return nn.ModuleList([
MLP(*default_cfg)
for i in range(num_experts)])
# new build way: mix mlp with leff
experts = []
for e_cfg in experts_cfg:
type_ = e_cfg.pop('type')
if type_ == 'mlp':
experts.append(MLP(*default_cfg))
return nn.ModuleList(experts)
class MoE(nn.Module):
"""Call a Sparsely gated mixture of experts layer with 1-layer
Feed-Forward networks as experts.
Args:
input_size: integer - size of the input
output_size: integer - size of the input
num_experts: an integer - number of experts
hidden_size: an integer - hidden size of the experts
noisy_gating: a boolean
k: an integer - how many experts to use for each batch element
"""
def __init__(self, input_size, output_size, num_experts, hidden_size,
experts=None, noisy_gating=True, k=4,
x_gating=None, with_noise=True, with_smart_merger=None):
super(MoE, self).__init__()
self.noisy_gating = noisy_gating
self.num_experts = num_experts
self.output_size = output_size
self.input_size = input_size
self.hidden_size = hidden_size
self.k = k
self.with_noise = with_noise
# instantiate experts
self.experts = build_experts(
experts,
(self.input_size, self.hidden_size, self.output_size),
num_experts)
self.w_gate = nn.Parameter(torch.zeros(input_size, num_experts), requires_grad=True)
self.w_noise = nn.Parameter(torch.zeros(input_size, num_experts), requires_grad=True)
self.x_gating = x_gating
if self.x_gating == 'conv1d':
self.x_gate = nn.Conv1d(4096, 1, kernel_size=3, padding=1)
self.softplus = nn.Softplus()
self.softmax = nn.Softmax(1)
self.register_buffer("mean", torch.tensor([0.0]))
self.register_buffer("std", torch.tensor([1.0]))
assert(self.k <= self.num_experts)
self.cnn_combine = None
if with_smart_merger == 'v1':
print('with SMART MERGER')
self.cnn_combine = nn.Conv2d(self.k, 1, kernel_size=3, padding=1)
def cv_squared(self, x):
"""The squared coefficient of variation of a sample.
Useful as a loss to encourage a positive distribution to be more uniform.
Epsilons added for numerical stability.
Returns 0 for an empty Tensor.
Args:
x: a `Tensor`.
Returns:
a `Scalar`.
"""
eps = 1e-10
# if only num_experts = 1
if x.shape[0] == 1:
return torch.tensor([0], device=x.device, dtype=x.dtype)
return x.float().var() / (x.float().mean()**2 + eps)
def _gates_to_load(self, gates):
"""Compute the true load per expert, given the gates.
The load is the number of examples for which the corresponding gate is >0.
Args:
gates: a `Tensor` of shape [batch_size, n]
Returns:
a float32 `Tensor` of shape [n]
"""
return (gates > 0).sum(0)
def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values):
"""Helper function to NoisyTopKGating.
Computes the probability that value is in top k, given different random noise.
This gives us a way of backpropagating from a loss that balances the number
of times each expert is in the top k experts per example.
In the case of no noise, pass in None for noise_stddev, and the result will
not be differentiable.
Args:
clean_values: a `Tensor` of shape [batch, n].
noisy_values: a `Tensor` of shape [batch, n]. Equal to clean values plus
normally distributed noise with standard deviation noise_stddev.
noise_stddev: a `Tensor` of shape [batch, n], or None
noisy_top_values: a `Tensor` of shape [batch, m].
"values" Output of tf.top_k(noisy_top_values, m). m >= k+1
Returns:
a `Tensor` of shape [batch, n].
"""
batch = clean_values.size(0)
m = noisy_top_values.size(1)
top_values_flat = noisy_top_values.flatten()
threshold_positions_if_in = torch.arange(batch, device=clean_values.device) * m + self.k
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
is_in = torch.gt(noisy_values, threshold_if_in)
threshold_positions_if_out = threshold_positions_if_in - 1
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
# is each value currently in the top k.
normal = Normal(self.mean, self.std)
prob_if_in = normal.cdf((clean_values - threshold_if_in)/noise_stddev)
prob_if_out = normal.cdf((clean_values - threshold_if_out)/noise_stddev)
prob = torch.where(is_in, prob_if_in, prob_if_out)
return prob
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2):
"""Noisy top-k gating.
See paper: https://arxiv.org/abs/1701.06538.
Args:
x: input Tensor with shape [batch_size, input_size]
train: a boolean - we only add noise at training time.
noise_epsilon: a float
Returns:
gates: a Tensor with shape [batch_size, num_experts]
load: a Tensor with shape [num_experts]
"""
clean_logits = x @ self.w_gate
if self.noisy_gating and train:
raw_noise_stddev = x @ self.w_noise
noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon))
noisy_logits = clean_logits + (torch.randn_like(clean_logits) * noise_stddev)
logits = noisy_logits
else:
logits = clean_logits
# calculate topk + 1 that will be needed for the noisy gates
top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim=1)
top_k_logits = top_logits[:, :self.k]
top_k_indices = top_indices[:, :self.k]
top_k_gates = self.softmax(top_k_logits)
zeros = torch.zeros_like(logits, requires_grad=True)
gates = zeros.scatter(1, top_k_indices, top_k_gates)
if self.noisy_gating and self.k < self.num_experts and train:
load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0)
else:
load = self._gates_to_load(gates)
return gates, load
def forward(self, x, loss_coef=1e-2):
"""Args:
x: tensor shape [batch_size, input_size]
train: a boolean scalar.
loss_coef: a scalar - multiplier on load-balancing losses
Returns:
y: a tensor with shape [batch_size, output_size].
extra_training_loss: a scalar. This should be added into the overall
training loss of the model. The backpropagation of this loss
encourages all experts to be approximately equally used across a batch.
"""
if self.x_gating is not None:
xg = self.x_gate(x).squeeze(1)
else:
xg = x.mean(1)
gates, load = self.noisy_top_k_gating(
xg, self.training and self.with_noise)
# calculate importance loss
importance = gates.sum(0)
#
loss = self.cv_squared(importance) + self.cv_squared(load)
loss *= loss_coef
dispatcher = SparseDispatcher(self.num_experts, gates)
expert_inputs = dispatcher.dispatch(x)
gates = dispatcher.expert_to_gates()
expert_outputs = [self.experts[i](expert_inputs[i])
for i in range(self.num_experts)]
y = dispatcher.combine(expert_outputs, cnn_combine=self.cnn_combine)
return y, loss |