Model Card for LoRa Adaptor: Llama 3 Instruct Fine-Tuned on Deutsche Bahn FAQ
Model Overview
Model Name: islam-hajosman/llama3_instruct_fine_tuned_bahn_1k_v1_lora_adapter
Architecture: Llama 3 Instruct with LoRa Adaptor
Quantization: 4-bit NF4 with double quantization
Domain-Specific Fine-Tuning Dataset: islam-hajosman/deutsche_bahn_faq_1k
This model card describes the LoRa adaptor fine-tuned to improve responses to FAQs from the Deutsche Bahn website. This project is part of a Master's thesis aiming to enhance domain-specific performance.
Fine-Tuning Configuration
LoRA Configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.0,
bias="none",
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
Hardware Used
- GPU: 1x H100 (80 GB PCIe)
- CPU: 26 cores
- RAM: 205.4 GB
- Storage: 1.1 TB SSD
- Cost: $2.5 per hour
Training Summary
- Total Trainable Parameters: 0.915% of 8B parameters
- LoRA-Adaptor Size: 4.37GB
- Training Time and Cost: $2 for 50 minutes
- Number of Steps per Epoch: 16 (based on 1024 samples, batch size 8, gradient accumulation 8)
Performance Metrics
- Training Completed:
- TrainOutput(global_step=480, training_loss=0.28411184588912874, metrics={'train_runtime': 3012.7974, 'train_samples_per_second': 10.197, 'train_steps_per_second': 0.159, 'total_flos': 3.871795189898281e+17, 'train_loss': 0.28411184588912874, 'epoch': 30.0})
Weights & Biases Tracking
Usage
To use this LoRa adaptor model, load it from Huggingface using the model name islam-hajosman/llama3_instruct_fine_tuned_bahn_1k_v1_lora_adapter
. This model is optimized for providing domain-specific answers to Deutsche Bahn FAQ.
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("islam-hajosman/llama3_instruct_fine_tuned_bahn_1k_v1_lora_adapter")
base_model = AutoModelForCausalLM.from_pretrained("base_model_name")
model = PeftModel.from_pretrained(base_model, "islam-hajosman/llama3_instruct_fine_tuned_bahn_1k_v1_lora_adapter")
input_text = "Ihre Frage hier"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
- Downloads last month
- 6
Model tree for islam-hajosman/llama3_instruct_fine_tuned_bahn_1k_lora_adapter
Base model
meta-llama/Meta-Llama-3-8B-Instruct