File size: 2,876 Bytes
76f598e
 
 
071b206
76f598e
 
 
071b206
 
 
 
76f598e
 
 
 
 
071b206
76f598e
071b206
 
 
76f598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
071b206
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
tags:
- generated_from_trainer
- retnet
model-index:
- name: kakuyomu-retnet-300m-1
  results: []
license: mit
language:
- ja
inference: false
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LightNovel-Intro-RetNet-400M

This model is a RetNet model trained from scratch using https://github.com/syncdoth/RetNet.

Demo: https://huggingface.co/spaces/p1atdev/LightNovel-Intro-RetNet-400M-Demo

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 5.5155        | 0.06  | 1000  | 5.5331          |
| 5.0106        | 0.13  | 2000  | 5.1774          |
| 4.793         | 0.19  | 3000  | 4.9399          |
| 4.7078        | 0.26  | 4000  | 4.7737          |
| 4.4789        | 0.32  | 5000  | 4.6373          |
| 4.3269        | 0.38  | 6000  | 4.5422          |
| 4.337         | 0.45  | 7000  | 4.4632          |
| 4.374         | 0.51  | 8000  | 4.4070          |
| 4.1447        | 0.58  | 9000  | 4.3293          |
| 4.1402        | 0.64  | 10000 | 4.2881          |
| 4.1329        | 0.7   | 11000 | 4.2287          |
| 3.9985        | 0.77  | 12000 | 4.1858          |
| 4.1185        | 0.83  | 13000 | 4.1506          |
| 4.0515        | 0.9   | 14000 | 4.0993          |
| 3.9984        | 0.96  | 15000 | 4.0611          |
| 3.7731        | 1.02  | 16000 | 4.0423          |
| 3.7403        | 1.09  | 17000 | 3.8166          |
| 3.6778        | 1.15  | 18000 | 3.8000          |
| 3.7227        | 1.22  | 19000 | 3.7875          |
| 3.6051        | 1.28  | 20000 | 3.7664          |
| 3.6143        | 1.34  | 21000 | 3.7496          |
| 3.6323        | 1.41  | 22000 | 3.7278          |
| 3.6487        | 1.47  | 23000 | 3.7089          |
| 3.6524        | 1.54  | 24000 | 3.6951          |
| 3.5621        | 1.6   | 25000 | 3.6801          |
| 3.5722        | 1.66  | 26000 | 3.6708          |
| 3.5277        | 1.73  | 27000 | 3.6635          |
| 3.6224        | 1.79  | 28000 | 3.6565          |
| 3.5663        | 1.85  | 29000 | 3.6532          |
| 3.5937        | 1.92  | 30000 | 3.6515          |
| 3.5944        | 1.98  | 31000 | 3.6510          |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0