File size: 9,153 Bytes
1abdfdf 5b4e6cf 1abdfdf 5b4e6cf 1abdfdf 5b4e6cf d0c79e1 5b4e6cf 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf 5b4e6cf 54d42df 5b4e6cf 1abdfdf d0c79e1 1abdfdf 5b4e6cf 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf a38f5af 1abdfdf 5b4e6cf a38f5af 1abdfdf a38f5af 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf a38f5af 1abdfdf a38f5af 1abdfdf a38f5af 1abdfdf a38f5af 1abdfdf a38f5af 1abdfdf a38f5af d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 1abdfdf d0c79e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
---
library_name: transformers
license: apache-2.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
Finetuned Llama3-8B-Instruct model on https://huggingface.co/datasets/isaacchung/hotpotqa-dev-raft-subset.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [Isaac Chung](https://huggingface.co/isaacchung)
<!-- - **Funded by [optional]:** [More Information Needed] -->
<!-- - **Shared by [optional]:** [More Information Needed] -->
<!-- - **Model type:** [More Information Needed] -->
- **Language(s) (NLP):** [English]
- **License:** [Apache 2.0]
- **Finetuned from model [optional]:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
<!-- ### Model Sources [optional] -->
<!-- Provide the basic links for the model. -->
<!-- - **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed] -->
<!-- ## Uses -->
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
<!-- ### Direct Use -->
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!-- [More Information Needed] -->
<!-- ### Downstream Use [optional] -->
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
<!-- [More Information Needed] -->
<!-- ### Out-of-Scope Use -->
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
<!-- [More Information Needed] -->
<!-- ## Bias, Risks, and Limitations -->
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
<!-- [More Information Needed] -->
<!-- ### Recommendations -->
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
<!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. -->
## How to Get Started with the Model
Use the code below to get started with the model.
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("isaacchung/llama3-8B-hotpotqa-raft")
model = AutoModelForCausalLM.from_pretrained("isaacchung/llama3-8B-hotpotqa-raft")
```
<!-- [More Information Needed] -->
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
https://huggingface.co/datasets/isaacchung/hotpotqa-dev-raft-subset
<!-- [More Information Needed] -->
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
<!-- #### Preprocessing [optional] -->
<!-- [More Information Needed] -->
#### Training Hyperparameters
<!-- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
Model loaded:
```python
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right' # to prevent warnings
```
Training params:
```python
# LoRA config based on QLoRA paper & Sebastian Raschka experiment
peft_config = LoraConfig(
lora_alpha=128,
lora_dropout=0.05,
r=256,
bias="none",
target_modules="all-linear",
task_type="CAUSAL_LM",
)
args = TrainingArguments(
num_train_epochs=3, # number of training epochs
per_device_train_batch_size=3, # batch size per device during training
gradient_accumulation_steps=2, # number of steps before performing a backward/update pass
gradient_checkpointing=True, # use gradient checkpointing to save memory
optim="adamw_torch_fused", # use fused adamw optimizer
logging_steps=10, # log every 10 steps
save_strategy="epoch", # save checkpoint every epoch
learning_rate=2e-4, # learning rate, based on QLoRA paper
bf16=True, # use bfloat16 precision
tf32=True, # use tf32 precision
max_grad_norm=0.3, # max gradient norm based on QLoRA paper
warmup_ratio=0.03, # warmup ratio based on QLoRA paper
lr_scheduler_type="constant", # use constant learning rate scheduler
)
max_seq_length = 3072 # max sequence length for model and packing of the dataset
trainer = SFTTrainer(
model=model,
args=args,
train_dataset=dataset,
peft_config=peft_config,
max_seq_length=max_seq_length,
tokenizer=tokenizer,
packing=True,
dataset_kwargs={
"add_special_tokens": False, # We template with special tokens
"append_concat_token": False, # No need to add additional separator token
}
)
```
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
- train_runtime: 1148.4436
- train_samples_per_second: 0.392
- train_steps_per_second: 0.065
- train_loss: 0.5639963404337565
- epoch: 3.0
#### Training Loss
```
{'loss': 1.0092, 'grad_norm': 0.27965569496154785, 'learning_rate': 0.0002, 'epoch': 0.4}
{'loss': 0.695, 'grad_norm': 0.17789314687252045, 'learning_rate': 0.0002, 'epoch': 0.8}
{'loss': 0.6747, 'grad_norm': 0.13655725121498108, 'learning_rate': 0.0002, 'epoch': 1.2}
{'loss': 0.508, 'grad_norm': 0.14653471112251282, 'learning_rate': 0.0002, 'epoch': 1.6}
{'loss': 0.4961, 'grad_norm': 0.14873674511909485, 'learning_rate': 0.0002, 'epoch': 2.0}
{'loss': 0.3509, 'grad_norm': 0.1657964587211609, 'learning_rate': 0.0002, 'epoch': 2.4}
{'loss': 0.3321, 'grad_norm': 0.1634644716978073, 'learning_rate': 0.0002, 'epoch': 2.8}
```
<!-- ## Evaluation -->
<!-- This section describes the evaluation protocols and provides the results. -->
<!-- ### Testing Data, Factors & Metrics -->
<!-- #### Testing Data -->
<!-- This should link to a Dataset Card if possible. -->
<!-- [More Information Needed] -->
<!-- #### Factors -->
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
<!-- [More Information Needed] -->
<!-- #### Metrics -->
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
<!-- [More Information Needed] -->
<!-- ### Results -->
<!-- [More Information Needed] -->
<!-- #### Summary -->
<!-- ## Model Examination [optional] -->
<!-- Relevant interpretability work for the model goes here -->
<!-- [More Information Needed] -->
<!-- ## Environmental Impact -->
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
<!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed] -->
## Technical Specifications [optional]
<!-- ### Model Architecture and Objective -->
<!-- [More Information Needed] -->
### Compute Infrastructure
<!-- [More Information Needed] -->
#### Hardware
- 1x NVIDIA RTX 6000 Ada
<!-- #### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
<!-- **BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional] -->
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
<!-- [More Information Needed] -->
<!-- ## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed] -->
## Model Card Contact
[Isaac Chung](https://huggingface.co/isaacchung) |