iot commited on
Commit
b177b04
·
verified ·
1 Parent(s): ea03fdd

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -0
README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Gemma Model Fine-Tuned on Custom Data
2
+
3
+ ## Model Description
4
+ This model is a fine-tuned version of Gemma Model on custom data. It was trained using the SFTTrainer and incorporates LoRA configurations to enhance performance.
5
+
6
+
7
+
8
+ ## Training Procedure
9
+ - **Batch size**: 1
10
+ - **Gradient accumulation steps**: 4
11
+ - **Learning rate**: 2e-4
12
+ - **Warmup steps**: 2
13
+ - **Max steps**: 100
14
+ - **Optimizer**: Paged AdamW 8-bit
15
+ - **FP16**: Enabled
16
+
17
+
18
+ ## Usage
19
+ You can use this model, Below is an example of how to load and use the model:
20
+
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ tokenizer = AutoTokenizer.from_pretrained("username/Gemma_model_fine_tune_custom_Data")
25
+ model = AutoModelForCausalLM.from_pretrained("username/Gemma_model_fine_tune_custom_Data")
26
+
27
+ input_text = "Your input text here"
28
+ inputs = tokenizer(input_text, return_tensors="pt")
29
+ outputs = model.generate(**inputs)
30
+
31
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))