Add exported onnx model 'model_qint8_avx512_vnni.onnx'
#22
by
tomaarsen
HF staff
- opened
Hello!
This pull request has been automatically generated from the export_dynamic_quantized_onnx_model
function from the Sentence Transformers library.
Config
QuantizationConfig(
is_static=False,
format=<QuantFormat.QOperator: 0>,
mode=<QuantizationMode.IntegerOps: 0>,
activations_dtype=<QuantType.QUInt8: 1>,
activations_symmetric=False,
weights_dtype=<QuantType.QInt8: 0>,
weights_symmetric=True,
per_channel=True,
reduce_range=False,
nodes_to_quantize=[],
nodes_to_exclude=[],
operators_to_quantize=['Conv',
'MatMul',
'Attention',
'LSTM',
'Gather',
'Transpose',
'EmbedLayerNormalization'],
qdq_add_pair_to_weight=False,
qdq_dedicated_pair=False,
qdq_op_type_per_channel_support_to_axis={'MatMul': 1}
)
Tip:
Consider testing this pull request before merging by loading the model from this PR with the revision
argument:
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"intfloat/multilingual-e5-base",
revision=f"refs/pr/{pr_number}",
backend="onnx",
model_kwargs={"file_name": "model_qint8_avx512_vnni.onnx"},
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)