File size: 15,337 Bytes
8a096e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#coding=utf-8
import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_
from contextlib import suppress
import logging
from einops import rearrange
from peft import LoraConfig, get_peft_model
from bigmodelvis import Visualization

from .clip_encoder_hd import CLIPVisionTowerHD
from .conversation import get_conv_template
from .processors_conv import preprocess_qwen
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel
from transformers.generation import GenerationConfig
from transformers import Qwen2Config, Qwen2ForCausalLM


def get_autocast(precision, cache_enabled=True):
    if precision == "amp_bfloat16" or precision == "amp_bf16" or precision == 'bf16':
        # amp_bfloat16 is more stable than amp float16 for clip training
        return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16, cache_enabled=cache_enabled)
    elif precision == 'fp16':
        return lambda: torch.cuda.amp.autocast(dtype=torch.float16, cache_enabled=cache_enabled)
    elif precision == 'fp32':
        return suppress
    else:
        raise ValueError('not supported precision: {}'.format(precision))


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""
    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


class InfMLLM_Unified_HD_Chat(PreTrainedModel):
    
    def __init__(self, config, debug=False):
        super().__init__(config)

        ## Initialize LM model
        self.lm_tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, use_fast=False, trust_remote_code=True)
        self.media_token_img = "<|image|>"
        self.media_token_id_img = self.lm_tokenizer(self.media_token_img, return_tensors="pt",add_special_tokens=False).input_ids.item()
        self.lm_model = Qwen2ForCausalLM(config.lm_config)

        self.lm_tokenizer.model_max_length = config.max_txt_len
        
        self.template_name = config.conv_style
        self.preprocess_function = preprocess_qwen

        self.separate = nn.Parameter(torch.zeros([1, 1, 4096]))
        self.newline = nn.Parameter(torch.zeros([1, 1, 1, 4096]))

        ## Initialize image encoder
        self.encoder_img = CLIPVisionTowerHD(config.vision_config, vision_select_layer=-2)
        self.encoder_img_ln = lambda x: x

        self.adapter_img = nn.Sequential(
            nn.Linear(self.encoder_img.num_features*4, self.lm_model.config.hidden_size),
            nn.GELU(),
            nn.Linear(self.lm_model.config.hidden_size, self.lm_model.config.hidden_size)
        )

        ## Others
        self.config = config
        self.precision = config.precision
        self._apply_lemmatizer = getattr(config, 'apply_lemmatizer', False)
        self._lemmatizer = None
        

    def forward_encoder_img(self, image):
        autocast = get_autocast(self.precision, cache_enabled=True)
        with autocast():
            assert isinstance(image, list)
            image_embeds, image_split = self.encoder_img(image, self.separate, self.newline)

            image_embeds = self.encoder_img_ln(image_embeds)                 # [bsz, L, D]
            image_embeds = self.adapter_img(image_embeds)
            return image_embeds, image_split

    def _concat_embeds(self,
                       prompt_embeds, prompt_ids, prompt_masks,
                       labels=None, padding='left'):
        emb_lens = [len(emb) for emb in prompt_embeds]
        if len(set(emb_lens)) == 1:
            if labels is not None:
                return torch.stack(prompt_embeds, dim=0), torch.stack(prompt_ids, dim=0), torch.stack(prompt_masks, dim=0), torch.stack(labels, dim=0)
            return torch.stack(prompt_embeds, dim=0), torch.stack(prompt_ids, dim=0), torch.stack(prompt_masks, dim=0)


        pad_emb = self.lm_model.get_input_embeddings()(torch.tensor(self.lm_tokenizer.pad_token_id, device=prompt_embeds[0].device))

        prompt_embeds_new = pad_emb.expand(len(emb_lens), max(emb_lens), -1).clone()
        prompt_ids_new = torch.ones([len(emb_lens), max(emb_lens)]).to(prompt_ids[0]) * self.lm_tokenizer.pad_token_id
        prompt_masks_new = torch.zeros([len(emb_lens), max(emb_lens)]).to(prompt_masks[0])
        if labels is not None:
            labels_new = -100 * torch.ones([len(emb_lens), max(emb_lens)]).to(prompt_ids[0])

        for i, L in enumerate(emb_lens):
            if padding == 'left':
                prompt_embeds_new[i, -L:] = prompt_embeds[i]
                prompt_ids_new[i, -L:] = prompt_ids[i]
                prompt_masks_new[i, -L:] = prompt_masks[i]
                if labels is not None:
                    labels_new[i, -L:] = labels[i]

            elif padding == 'right':
                prompt_embeds_new[i, :L] = prompt_embeds[i]
                prompt_ids_new[i, :L] = prompt_ids[i]
                prompt_masks_new[i, :L] = prompt_masks[i]
                if labels is not None:
                    labels_new[i, :L] = labels[i]
            else:
                raise ValueError()

        if labels is not None:
            return prompt_embeds_new, prompt_ids_new, prompt_masks_new, labels_new
        return prompt_embeds_new, prompt_ids_new, prompt_masks_new

    def _insert_media_feat(self,
                           prompt_embeds, prompt_ids, prompt_masks,
                           is_languages,
                           embeds_media, media_token_id,
                           index_list=None,
                           labels=None, len_media=None):
        ## insert embeds_media into prompt
        prompt_embeds_new = []
        prompt_masks_new = []
        prompt_ids_new = []
        labels_new = []
        device = embeds_media[0].device

        if index_list is not None:
            assert len(index_list) == len(embeds_media)
            assert len(embeds_media) <= len(prompt_embeds)

        for b in range(len(prompt_embeds)):
            if (index_list is not None) and (b not in index_list):
                prompt_embeds_new.append(prompt_embeds[b])
                prompt_ids_new.append(prompt_ids[b])
                prompt_masks_new.append(prompt_masks[b])
                if labels is not None:
                    labels_new.append(labels[b])
            else:
                _idx = prompt_ids[b].tolist().index(media_token_id)
                if index_list is not None:
                    b_media = index_list.index(b)
                else:
                    b_media = b

                if len_media is not None:
                    cur_embeds_media = embeds_media[b_media, :len_media[b_media]]
                else:
                    cur_embeds_media = embeds_media[b_media]

                prompt_embeds_new.append(torch.cat([prompt_embeds[b][:_idx+1],
                                                    cur_embeds_media,
                                                    prompt_embeds[b][_idx+1:]
                                                    ], dim=0))
                prompt_ids_new.append(torch.cat([prompt_ids[b][:_idx+1],
                                                    torch.ones(len(cur_embeds_media), dtype=torch.long).to(device).fill_(-100),
                                                    prompt_ids[b][_idx+1:]
                                                    ], dim=0))
                if labels is not None:
                    labels_new.append(torch.cat([labels[b][:_idx+1],
                                                    torch.ones(len(cur_embeds_media), dtype=torch.long).to(device).fill_(-100),
                                                    labels[b][_idx+1:]
                                                    ], dim=0))

                # if is pure-language sample, mask out image-embeddings
                prompt_masks_new.append(torch.cat([prompt_masks[b][:_idx+1],
                                                    torch.zeros(len(cur_embeds_media), dtype=torch.long).to(device) if is_languages[b] else
                                                        torch.ones(len(cur_embeds_media), dtype=torch.long).to(device),
                                                    prompt_masks[b][_idx+1:]], dim=0))

        if labels is not None:
            return prompt_embeds_new, prompt_ids_new, prompt_masks_new, labels_new
        return prompt_embeds_new, prompt_ids_new, prompt_masks_new


    @torch.no_grad()
    def generate(
        self,
        samples,
        num_beams=5,
        max_length=128,
        min_length=1,
        top_p=0.9,
        temperature=0.,
        return_prompts=False
    ):
        autocast = get_autocast(self.precision, cache_enabled=True)
        with autocast():
            conversations = samples['conversations']
            is_languages = [False] * len(conversations)

            image_img = samples.get('images', None)
 
            index_img = list(range(len(image_img)))

            device = None
            special_prefix = ["" for _ in range(len(conversations))]

            if (self.config.encoder_img is not None) and (image_img is not None) and len(index_img) > 0:
                for i in index_img:
                    special_prefix[i] = self.media_token_img + special_prefix[i]

                new_image_img = []
                for index in index_img:
                    new_image_img.append(image_img[index])
                embeds_img, len_img = self.forward_encoder_img(new_image_img)
                device = embeds_img.device

            conv = get_conv_template(self.template_name)
            roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}

            prompts = []
            for i, source in enumerate(conversations):
                if roles[source[0]['from']] != conv.roles[0]:
                    # Skip the first one if it is not from human
                    source = source[1:]

                per_prefix = special_prefix[i]
                conv.messages = []
                for j, sentence in enumerate(source):
                    role = roles[sentence['from']]
                    assert role == conv.roles[j % 2], f'{i}'
                    sentence['value'] = sentence['value'].replace("<image>", "").strip()       # llava-1.5 add <image> to the begin of the question, remove here

                    if j == 0:
                        sentence['value'] = per_prefix + sentence['value']

                    conv.append_message(role, sentence['value'])
                prompts.append(conv.get_prompt())

            self.lm_tokenizer.padding_side = "left"
            if self.lm_tokenizer.bos_token is not None:
                prompt_text = [self.lm_tokenizer.bos_token + t for t in prompts]
            else:
                prompt_text = prompts

            prompt_tokens = self.lm_tokenizer(
                prompt_text,
                return_tensors="pt",
                padding="longest",
                truncation=False,
                add_special_tokens=False
            ).to(device)


            prompt_embeds = self.lm_model.get_input_embeddings()(prompt_tokens.input_ids)
            
            prompt_masks = prompt_tokens.attention_mask                                                                         # [bsz, n2]
            prompt_ids = prompt_tokens.input_ids
            assert torch.all(prompt_ids[:, -1] != self.lm_tokenizer.pad_token_id), "make sure padding left"

            if embeds_img is not None:
                prompt_embeds, prompt_ids, prompt_masks = self._insert_media_feat(prompt_embeds=prompt_embeds,
                                                                                  prompt_ids=prompt_ids,
                                                                                  prompt_masks=prompt_masks,
                                                                                  is_languages=is_languages,
                                                                                  embeds_media=embeds_img,
                                                                                  media_token_id=self.media_token_id_img,
                                                                                  index_list=index_img,
                                                                                  len_media=len_img)


            # pad and concat embeds
            prompt_embeds, prompt_ids, prompt_masks = self._concat_embeds(prompt_embeds, prompt_ids, prompt_masks, padding="left")
            assert torch.all(prompt_ids[:, -1] != self.lm_tokenizer.pad_token_id), "make sure padding left"

            kwargs = {}
            kwargs['max_new_tokens'] = max_length

            outputs = self.lm_model.generate(
                #input_ids=input_ids,
                inputs_embeds=prompt_embeds,
                attention_mask=prompt_masks,
                do_sample=True if temperature > 0 else False,
                temperature=temperature,
                top_p=top_p,
                num_beams=num_beams,
                eos_token_id=self.lm_tokenizer.eos_token_id,
                #max_length=max_length,
                min_length=min_length,
                **kwargs
            )
            output_text = self.lm_tokenizer.batch_decode(
                outputs, skip_special_tokens=True
            )
            output_text = [text.strip() for text in output_text]

        if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
            output_text = self._lemmatize(output_text)

        if return_prompts:
            return output_text, prompts
        return output_text

    def _lemmatize(self, answers):
        def apply(answer):
            doc = self.lemmatizer(answer)

            words = []
            for token in doc:
                if token.pos_ in ["NOUN", "VERB"]:
                    words.append(token.lemma_)
                else:
                    words.append(token.text)
            answer = " ".join(words)

            return answer

        return [apply(answer) for answer in answers]

    @property
    def lemmatizer(self):
        if self._lemmatizer is None:
            try:
                import spacy
                self._lemmatizer = spacy.load("en_core_web_sm")
            except ImportError:
                logging.error(
                    """
                    Please install spacy and en_core_web_sm model to apply lemmatization.
                    python -m spacy download en_core_web_sm
                    OR
                    import spacy.cli
                    spacy.cli.download("en_core_web_sm")
                    """
                )
                exit(1)

        return self._lemmatizer