QianYEee commited on
Commit
8a096e8
1 Parent(s): c6586c9

Upload 18 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|document|>": 151647,
3
+ "<|endoftext|>": 151643,
4
+ "<|im_end|>": 151645,
5
+ "<|im_start|>": 151644,
6
+ "<|image|>": 151646,
7
+ "<|video|>": 151648
8
+ }
clip_encoder_hd.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import re
4
+ import math
5
+ from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
6
+
7
+
8
+ def build_vision_tower():
9
+ vision_tower = 'openai/clip-vit-large-patch14-336'
10
+ return CLIPVisionTower(vision_tower)
11
+
12
+ class CLIPVisionTowerHD(nn.Module):
13
+ def __init__(self, config, vision_select_layer=-2):
14
+ super().__init__()
15
+
16
+ self.is_loaded = False
17
+
18
+ # self.vision_tower_name = vision_tower
19
+ self.vis_config = config
20
+ self.select_layer = vision_select_layer
21
+ self.select_feature = 'patch'
22
+ self.load_model()
23
+
24
+ def load_model(self):
25
+ # self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
26
+ self.vision_tower = CLIPVisionModel(CLIPVisionConfig(**self.vis_config))
27
+ self.vision_tower.requires_grad_(False)
28
+
29
+ self.is_loaded = True
30
+
31
+ def resize_pos(self):
32
+ print ('Dummy Resized')
33
+
34
+ def feature_select(self, image_forward_outs):
35
+ image_features = image_forward_outs.hidden_states[self.select_layer]
36
+ if self.select_feature == 'patch':
37
+ image_features = image_features[:, 1:]
38
+ elif self.select_feature == 'cls_patch':
39
+ image_features = image_features
40
+ else:
41
+ raise ValueError(f'Unexpected select feature: {self.select_feature}')
42
+ return image_features
43
+
44
+ def forward(self, images, glb_GN, sub_GN):
45
+ if not self.is_loaded:
46
+ self.load_model()
47
+ assert type(images) is list
48
+ shapes = []
49
+ input_imgs = []
50
+ for img in images:
51
+ _, C, H, W = img.shape
52
+ shapes.append([H//336, W//336])
53
+ sub_img = img.reshape(1,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous()
54
+ glb_img = torch.nn.functional.interpolate(img.float(), size=(336,336), mode='bicubic',).to(sub_img.dtype)
55
+ input_imgs.append(glb_img)
56
+ input_imgs.append(sub_img)
57
+ input_imgs = torch.cat(input_imgs, dim=0)
58
+
59
+ image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
60
+ image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) ### B*?, N, C
61
+ _, N, C = image_features.shape
62
+ H = int(math.sqrt(N))
63
+ assert N == 24 ** 2
64
+
65
+ output_imgs = []
66
+ output_len = []
67
+ for [h, w] in shapes:
68
+ B_ = h*w
69
+ glb_img = image_features[:1] ### 1, N, C
70
+ glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
71
+ temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1)
72
+ glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
73
+
74
+ sub_img = image_features[1:1+B_] ### ?, N, C
75
+ sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
76
+ sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
77
+ temp_sub_GN = sub_GN.repeat(1, h*12, 1, 1)
78
+ sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
79
+
80
+ output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1))
81
+ temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
82
+ assert temp_len == output_imgs[-1].shape[1]
83
+ output_len.append(temp_len)
84
+
85
+ image_features = image_features[1+h*w:]
86
+
87
+ new_output_imgs = []
88
+ max_len = max(output_len)
89
+ for img_feat in output_imgs:
90
+ if img_feat.shape[1] < max_len:
91
+ pad_feat = torch.zeros(1, (max_len-img_feat.shape[1]), img_feat.shape[2]).to(img_feat.device)
92
+ img_feat_padding = torch.cat([img_feat, pad_feat], dim=1)
93
+ new_output_imgs.append(img_feat_padding)
94
+ else:
95
+ new_output_imgs.append(img_feat)
96
+
97
+ output_imgs = torch.cat(new_output_imgs, dim=0)
98
+
99
+ return output_imgs, output_len
100
+
101
+ @property
102
+ def dummy_feature(self):
103
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
104
+
105
+ @property
106
+ def dtype(self):
107
+ return self.vision_tower.dtype
108
+
109
+ @property
110
+ def device(self):
111
+ return self.vision_tower.device
112
+
113
+ @property
114
+ def config(self):
115
+ if self.is_loaded:
116
+ return self.vision_tower.config
117
+ else:
118
+ return self.cfg_only
119
+
120
+ @property
121
+ def num_features(self):
122
+ return self.config.hidden_size
123
+
124
+ @property
125
+ def num_patches(self):
126
+ return (self.config.image_size // self.config.patch_size) ** 2
127
+
config.json ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InfMLLM_Unified_HD_Chat"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_infmllm_unified_hd_chat.InfMLLMUnifiedHDChatConfig",
7
+ "AutoModel": "modeling_infmllm_unified_hd_chat.InfMLLM_Unified_HD_Chat"
8
+ },
9
+ "conv_style": "qwen-7b-chat",
10
+ "encoder_img": "pretrain_models/openai/clip-vit-large-patch14-336/",
11
+ "encoder_video": null,
12
+ "hd_num": 16,
13
+ "image_size_img": 336,
14
+ "lm_config": {
15
+ "_name_or_path": "",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "Qwen2ForCausalLM"
19
+ ],
20
+ "attention_dropout": 0.0,
21
+ "bad_words_ids": null,
22
+ "begin_suppress_tokens": null,
23
+ "bos_token_id": 151643,
24
+ "chunk_size_feed_forward": 0,
25
+ "cross_attention_hidden_size": null,
26
+ "decoder_start_token_id": null,
27
+ "diversity_penalty": 0.0,
28
+ "do_sample": false,
29
+ "early_stopping": false,
30
+ "encoder_no_repeat_ngram_size": 0,
31
+ "eos_token_id": 151645,
32
+ "exponential_decay_length_penalty": null,
33
+ "finetuning_task": null,
34
+ "forced_bos_token_id": null,
35
+ "forced_eos_token_id": null,
36
+ "hidden_act": "silu",
37
+ "hidden_size": 3584,
38
+ "id2label": {
39
+ "0": "LABEL_0",
40
+ "1": "LABEL_1"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 18944,
44
+ "is_decoder": false,
45
+ "is_encoder_decoder": false,
46
+ "label2id": {
47
+ "LABEL_0": 0,
48
+ "LABEL_1": 1
49
+ },
50
+ "length_penalty": 1.0,
51
+ "max_length": 20,
52
+ "max_position_embeddings": 32768,
53
+ "max_window_layers": 28,
54
+ "min_length": 0,
55
+ "model_type": "qwen2",
56
+ "no_repeat_ngram_size": 0,
57
+ "num_attention_heads": 28,
58
+ "num_beam_groups": 1,
59
+ "num_beams": 1,
60
+ "num_hidden_layers": 28,
61
+ "num_key_value_heads": 4,
62
+ "num_return_sequences": 1,
63
+ "output_attentions": false,
64
+ "output_hidden_states": false,
65
+ "output_scores": false,
66
+ "pad_token_id": null,
67
+ "prefix": null,
68
+ "problem_type": null,
69
+ "pruned_heads": {},
70
+ "remove_invalid_values": false,
71
+ "repetition_penalty": 1.0,
72
+ "return_dict": true,
73
+ "return_dict_in_generate": false,
74
+ "rms_norm_eps": 1e-06,
75
+ "rope_theta": 1000000.0,
76
+ "sep_token_id": null,
77
+ "sliding_window": 131072,
78
+ "suppress_tokens": null,
79
+ "task_specific_params": null,
80
+ "temperature": 1.0,
81
+ "tf_legacy_loss": false,
82
+ "tie_encoder_decoder": false,
83
+ "tie_word_embeddings": false,
84
+ "tokenizer_class": null,
85
+ "top_k": 50,
86
+ "top_p": 1.0,
87
+ "torch_dtype": "bfloat16",
88
+ "torchscript": false,
89
+ "typical_p": 1.0,
90
+ "use_bfloat16": false,
91
+ "use_cache": true,
92
+ "use_sliding_window": false,
93
+ "vocab_size": 152064
94
+ },
95
+ "lm_model": "pretrain_models/Qwen2-7B-Instruct/",
96
+ "lm_tokenizer": "pretrain_models/Qwen2-7B-Instruct/",
97
+ "max_txt_len": 4096,
98
+ "precision": "bf16",
99
+ "torch_dtype": "float32",
100
+ "transformers_version": "4.40.2",
101
+ "vision_config": {
102
+ "_name_or_path": "",
103
+ "add_cross_attention": false,
104
+ "architectures": null,
105
+ "attention_dropout": 0.0,
106
+ "bad_words_ids": null,
107
+ "begin_suppress_tokens": null,
108
+ "bos_token_id": null,
109
+ "chunk_size_feed_forward": 0,
110
+ "cross_attention_hidden_size": null,
111
+ "decoder_start_token_id": null,
112
+ "diversity_penalty": 0.0,
113
+ "do_sample": false,
114
+ "dropout": 0.0,
115
+ "early_stopping": false,
116
+ "encoder_no_repeat_ngram_size": 0,
117
+ "eos_token_id": null,
118
+ "exponential_decay_length_penalty": null,
119
+ "finetuning_task": null,
120
+ "forced_bos_token_id": null,
121
+ "forced_eos_token_id": null,
122
+ "hidden_act": "quick_gelu",
123
+ "hidden_size": 1024,
124
+ "id2label": {
125
+ "0": "LABEL_0",
126
+ "1": "LABEL_1"
127
+ },
128
+ "image_size": 336,
129
+ "initializer_factor": 1.0,
130
+ "initializer_range": 0.02,
131
+ "intermediate_size": 4096,
132
+ "is_decoder": false,
133
+ "is_encoder_decoder": false,
134
+ "label2id": {
135
+ "LABEL_0": 0,
136
+ "LABEL_1": 1
137
+ },
138
+ "layer_norm_eps": 1e-05,
139
+ "length_penalty": 1.0,
140
+ "max_length": 20,
141
+ "min_length": 0,
142
+ "model_type": "clip_vision_model",
143
+ "no_repeat_ngram_size": 0,
144
+ "num_attention_heads": 16,
145
+ "num_beam_groups": 1,
146
+ "num_beams": 1,
147
+ "num_channels": 3,
148
+ "num_hidden_layers": 24,
149
+ "num_return_sequences": 1,
150
+ "output_attentions": false,
151
+ "output_hidden_states": false,
152
+ "output_scores": false,
153
+ "pad_token_id": null,
154
+ "patch_size": 14,
155
+ "prefix": null,
156
+ "problem_type": null,
157
+ "projection_dim": 768,
158
+ "pruned_heads": {},
159
+ "remove_invalid_values": false,
160
+ "repetition_penalty": 1.0,
161
+ "return_dict": true,
162
+ "return_dict_in_generate": false,
163
+ "sep_token_id": null,
164
+ "suppress_tokens": null,
165
+ "task_specific_params": null,
166
+ "temperature": 1.0,
167
+ "tf_legacy_loss": false,
168
+ "tie_encoder_decoder": false,
169
+ "tie_word_embeddings": true,
170
+ "tokenizer_class": null,
171
+ "top_k": 50,
172
+ "top_p": 1.0,
173
+ "torch_dtype": null,
174
+ "torchscript": false,
175
+ "typical_p": 1.0,
176
+ "use_bfloat16": false
177
+ }
178
+ }
configuration_infmllm_unified_hd_chat.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+ from transformers import Qwen2Config, CLIPVisionConfig
5
+
6
+ class InfMLLMUnifiedHDChatConfig(PretrainedConfig):
7
+ def __init__(
8
+ self,
9
+ vison_config=None,
10
+ lm_config=None,
11
+ lm_model="",
12
+ lm_tokenizer="",
13
+ lora_modules="",
14
+ lora_llm=False,
15
+ lora_r=128,
16
+ lora_alpha=256,
17
+ lora_dropout=0,
18
+ #
19
+ encoder_img="",
20
+ image_size_img=336,
21
+ lora_encoder_img=False,
22
+ hd_num=9,
23
+ #
24
+ encoder_video="",
25
+ #
26
+ max_txt_len=4096,
27
+ conv_style='qwen-7b-chat',
28
+ precision="bf16",
29
+ **kwargs
30
+ ):
31
+ self.lm_model = lm_model
32
+ self.lm_tokenizer = lm_tokenizer
33
+ self.lora_modules = lora_modules
34
+ self.lora_llm = lora_llm
35
+ self.lora_r = lora_r
36
+ self.lora_alpha = lora_alpha
37
+ self.lora_dropout = lora_dropout
38
+
39
+ self.encoder_img = encoder_img
40
+ self.image_size_img = image_size_img
41
+ self.lora_encoder_img = lora_encoder_img
42
+ self.hd_num = hd_num
43
+
44
+ self.encoder_video = encoder_video
45
+
46
+ self.max_txt_len = max_txt_len
47
+ self.conv_style = conv_style
48
+
49
+ self.precision = precision
50
+ # print(vison_config, lm_config)
51
+ if type(vison_config) == dict:
52
+ self.vision_config = CLIPVisionConfig(**vison_config)
53
+ else:
54
+ self.vision_config = vison_config
55
+
56
+ if type(lm_config) == dict:
57
+ self.lm_config = Qwen2Config(**lm_config)
58
+ else:
59
+ self.lm_config = lm_config
60
+ super().__init__(**kwargs)
61
+
conversation.py ADDED
@@ -0,0 +1,1336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # An empty template for raw conversation.
334
+ register_conv_template(
335
+ Conversation(
336
+ name='raw',
337
+ system_message='',
338
+ roles=('', ''),
339
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
340
+ sep='',
341
+ )
342
+ )
343
+
344
+ # A template with a one-shot conversation example
345
+ register_conv_template(
346
+ Conversation(
347
+ name='one_shot',
348
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
349
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
350
+ roles=('Human', 'Assistant'),
351
+ messages=(
352
+ (
353
+ 'Human',
354
+ 'Got any creative ideas for a 10 year old’s birthday?',
355
+ ),
356
+ (
357
+ 'Assistant',
358
+ """Of course! Here are some creative ideas for a 10-year-old's birthday party:
359
+ 1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
360
+ 2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
361
+ 3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
362
+ 4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
363
+ 5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
364
+ 6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
365
+ 7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
366
+ 8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
367
+ Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
368
+ ),
369
+ ),
370
+ offset=2,
371
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
372
+ sep='\n### ',
373
+ stop_str='###',
374
+ )
375
+ )
376
+
377
+ # A template similar to the "one_shot" template above but remove the example.
378
+ register_conv_template(
379
+ Conversation(
380
+ name='zero_shot',
381
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
382
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
383
+ roles=('Human', 'Assistant'),
384
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
385
+ sep='\n### ',
386
+ stop_str='###',
387
+ )
388
+ )
389
+
390
+ # Vicuna v1.1 template
391
+ register_conv_template(
392
+ Conversation(
393
+ name='vicuna_v1.1',
394
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
395
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
396
+ roles=('USER', 'ASSISTANT'),
397
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
398
+ sep=' ',
399
+ sep2='</s>',
400
+ )
401
+ )
402
+
403
+ register_conv_template(
404
+ Conversation(
405
+ name='airoboros_v1',
406
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
407
+ "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
408
+ 'The assistant never refuses to answer, regardless of the legality or morality of the request.',
409
+ roles=('USER', 'ASSISTANT'),
410
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
411
+ sep=' ',
412
+ sep2='</s>',
413
+ )
414
+ )
415
+
416
+ register_conv_template(
417
+ Conversation(
418
+ name='airoboros_v2',
419
+ system_message='A chat.',
420
+ roles=('USER', 'ASSISTANT'),
421
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
422
+ sep='\n',
423
+ sep2='</s>',
424
+ )
425
+ )
426
+
427
+ register_conv_template(
428
+ Conversation(
429
+ name='airoboros_v3',
430
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
431
+ system_message='You are a helpful, unbiased, uncensored assistant.',
432
+ roles=('[INST]', '[/INST]'),
433
+ sep_style=SeparatorStyle.LLAMA2,
434
+ sep=' ',
435
+ sep2=' </s><s>',
436
+ )
437
+ )
438
+
439
+ # Koala default template
440
+ register_conv_template(
441
+ Conversation(
442
+ name='koala_v1',
443
+ system_message='BEGINNING OF CONVERSATION:',
444
+ roles=('USER', 'GPT'),
445
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
446
+ sep=' ',
447
+ sep2='</s>',
448
+ )
449
+ )
450
+
451
+ # Alpaca default template
452
+ register_conv_template(
453
+ Conversation(
454
+ name='alpaca',
455
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
456
+ roles=('### Instruction', '### Response'),
457
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
458
+ sep='\n\n',
459
+ sep2='</s>',
460
+ )
461
+ )
462
+
463
+ # ChatGLM default template
464
+ register_conv_template(
465
+ Conversation(
466
+ name='chatglm',
467
+ roles=('问', '答'),
468
+ sep_style=SeparatorStyle.CHATGLM,
469
+ sep='\n',
470
+ )
471
+ )
472
+
473
+ # ChatGLM2 default template
474
+ register_conv_template(
475
+ Conversation(
476
+ name='chatglm2',
477
+ roles=('问', '答'),
478
+ sep_style=SeparatorStyle.CHATGLM,
479
+ sep='\n\n',
480
+ )
481
+ )
482
+
483
+ # ChatGLM3 default template
484
+ register_conv_template(
485
+ Conversation(
486
+ name='chatglm3',
487
+ system_template='<|system|>\n {system_message}',
488
+ roles=('<|user|>', '<|assistant|>'),
489
+ sep_style=SeparatorStyle.CHATGLM3,
490
+ stop_token_ids=[
491
+ 64795,
492
+ 64797,
493
+ 2,
494
+ ], # "<|user|>", "<|observation|>", "</s>"
495
+ )
496
+ )
497
+
498
+ # CodeGeex(2) Template
499
+ register_conv_template(
500
+ Conversation(
501
+ name='codegeex',
502
+ roles=('', ''),
503
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
504
+ sep='\n\n',
505
+ stop_token_ids=[0, 2],
506
+ )
507
+ )
508
+
509
+ # Dolly V2 default template
510
+ register_conv_template(
511
+ Conversation(
512
+ name='dolly_v2',
513
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n',
514
+ roles=('### Instruction', '### Response'),
515
+ sep_style=SeparatorStyle.DOLLY,
516
+ sep='\n\n',
517
+ sep2='### End',
518
+ )
519
+ )
520
+
521
+ # OpenAssistant Pythia default template
522
+ register_conv_template(
523
+ Conversation(
524
+ name='oasst_pythia',
525
+ roles=('<|prompter|>', '<|assistant|>'),
526
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
527
+ sep='<|endoftext|>',
528
+ )
529
+ )
530
+
531
+ # OpenAssistant default template
532
+ register_conv_template(
533
+ Conversation(
534
+ name='oasst_llama',
535
+ roles=('<|prompter|>', '<|assistant|>'),
536
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
537
+ sep='</s>',
538
+ )
539
+ )
540
+
541
+ # OpenChat 3.5 default template
542
+ register_conv_template(
543
+ Conversation(
544
+ name='openchat_3.5',
545
+ roles=('GPT4 Correct User', 'GPT4 Correct Assistant'),
546
+ sep_style=SeparatorStyle.FALCON_CHAT,
547
+ sep='<|end_of_turn|>',
548
+ )
549
+ )
550
+
551
+ # Tulu default template
552
+ register_conv_template(
553
+ Conversation(
554
+ name='tulu',
555
+ roles=('<|user|>', '<|assistant|>'),
556
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
557
+ sep='\n',
558
+ )
559
+ )
560
+
561
+ # StableLM Alpha default template
562
+ register_conv_template(
563
+ Conversation(
564
+ name='stablelm',
565
+ system_template='<|SYSTEM|>{system_message}',
566
+ system_message="""# StableLM Tuned (Alpha version)
567
+ - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
568
+ - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
569
+ - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
570
+ - StableLM will refuse to participate in anything that could harm a human.
571
+ """,
572
+ roles=('<|USER|>', '<|ASSISTANT|>'),
573
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
574
+ sep='',
575
+ stop_token_ids=[50278, 50279, 50277, 1, 0],
576
+ )
577
+ )
578
+
579
+ # Baize default template
580
+ register_conv_template(
581
+ Conversation(
582
+ name='baize',
583
+ system_message='The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n',
584
+ roles=('[|Human|]', '[|AI|]'),
585
+ messages=(
586
+ ('[|Human|]', 'Hello!'),
587
+ ('[|AI|]', 'Hi!'),
588
+ ),
589
+ offset=2,
590
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
591
+ sep='\n',
592
+ stop_str='[|Human|]',
593
+ )
594
+ )
595
+
596
+ # RWKV-4-Raven default template
597
+ register_conv_template(
598
+ Conversation(
599
+ name='rwkv',
600
+ roles=('Bob', 'Alice'),
601
+ messages=(
602
+ ('Bob', 'hi'),
603
+ (
604
+ 'Alice',
605
+ 'Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.',
606
+ ),
607
+ ),
608
+ offset=2,
609
+ sep_style=SeparatorStyle.RWKV,
610
+ sep='',
611
+ stop_str='\n\n',
612
+ )
613
+ )
614
+
615
+ # Buddy default template
616
+ register_conv_template(
617
+ Conversation(
618
+ name='openbuddy',
619
+ system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
620
+ Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
621
+ Buddy cannot access the Internet.
622
+ Buddy can fluently speak the user's language (e.g. English, Chinese).
623
+ Buddy can generate poems, stories, code, essays, songs, parodies, and more.
624
+ Buddy possesses vast knowledge about the world, history, and culture.
625
+ Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
626
+ Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
627
+
628
+ User: Hi.
629
+ Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
630
+ roles=('User', 'Assistant'),
631
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
632
+ sep='\n',
633
+ )
634
+ )
635
+
636
+ # Phoenix default template
637
+ register_conv_template(
638
+ Conversation(
639
+ name='phoenix',
640
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
641
+ roles=('Human', 'Assistant'),
642
+ sep_style=SeparatorStyle.PHOENIX,
643
+ sep='</s>',
644
+ )
645
+ )
646
+
647
+ # ReaLM default template
648
+ register_conv_template(
649
+ Conversation(
650
+ name='ReaLM-7b-v1',
651
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
652
+ roles=('Human', 'Assistant'),
653
+ sep_style=SeparatorStyle.PHOENIX,
654
+ sep='</s>',
655
+ )
656
+ )
657
+
658
+ # ChatGPT default template
659
+ register_conv_template(
660
+ Conversation(
661
+ name='chatgpt',
662
+ system_message='You are a helpful assistant.',
663
+ roles=('user', 'assistant'),
664
+ sep_style=None,
665
+ sep=None,
666
+ )
667
+ )
668
+
669
+ # Claude default template
670
+ register_conv_template(
671
+ Conversation(
672
+ name='claude',
673
+ roles=('Human', 'Assistant'),
674
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
675
+ sep='\n\n',
676
+ )
677
+ )
678
+
679
+ # MPT default template
680
+ register_conv_template(
681
+ Conversation(
682
+ name='mpt-7b-chat',
683
+ system_template="""<|im_start|>system
684
+ {system_message}""",
685
+ system_message="""- You are a helpful assistant chatbot trained by MosaicML.
686
+ - You answer questions.
687
+ - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
688
+ - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
689
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
690
+ sep_style=SeparatorStyle.CHATML,
691
+ sep='<|im_end|>',
692
+ stop_token_ids=[50278, 0],
693
+ )
694
+ )
695
+
696
+ # MPT-30b-chat default template
697
+ register_conv_template(
698
+ Conversation(
699
+ name='mpt-30b-chat',
700
+ system_template="""<|im_start|>system
701
+ {system_message}""",
702
+ system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
703
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
704
+ sep_style=SeparatorStyle.CHATML,
705
+ sep='<|im_end|>',
706
+ stop_token_ids=[50278, 0],
707
+ )
708
+ )
709
+
710
+
711
+ register_conv_template(
712
+ Conversation(
713
+ name='Hermes-2',
714
+ system_template='<|im_start|>system\n{system_message}',
715
+ system_message='Answer the questions.',
716
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
717
+ sep_style=SeparatorStyle.MPT,
718
+ sep='<|im_end|>',
719
+ stop_token_ids=[
720
+ 2,
721
+ 6,
722
+ 7,
723
+ 8,
724
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
725
+ stop_str='<|endoftext|>',
726
+ )
727
+ )
728
+
729
+
730
+ register_conv_template(
731
+ Conversation(
732
+ name='internlm2-chat',
733
+ system_template='<|im_start|>system\n{system_message}',
734
+ system_message='You are an AI assistant whose name is InternLM (书生·浦语).',
735
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
736
+ sep_style=SeparatorStyle.MPT,
737
+ sep='<|im_end|>',
738
+ stop_token_ids=[
739
+ 2,
740
+ 92543,
741
+ 92542
742
+ ]
743
+ )
744
+ )
745
+
746
+
747
+ register_conv_template(
748
+ Conversation(
749
+ name='llama3-chat',
750
+ system_template='<|system|>\n{system_message}',
751
+ system_message='You are an AI assistant whose name is InternVL.',
752
+ roles=('<|user|>\n', '<|assistant|>\n'),
753
+ sep_style=SeparatorStyle.MPT,
754
+ sep='<|end|>',
755
+ stop_token_ids=[
756
+ 128259,
757
+ 128001
758
+ ]
759
+ )
760
+ )
761
+
762
+
763
+ register_conv_template(
764
+ Conversation(
765
+ name='phi3-chat',
766
+ system_template='<|system|>\n{system_message}',
767
+ system_message='You are an AI assistant whose name is Phi-3.',
768
+ roles=('<|user|>\n', '<|assistant|>\n'),
769
+ sep_style=SeparatorStyle.MPT,
770
+ sep='<|end|>',
771
+ stop_token_ids=[
772
+ 2,
773
+ 32000,
774
+ 32007
775
+ ]
776
+ )
777
+ )
778
+
779
+ # Lemur-70b-chat default template
780
+ # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
781
+ register_conv_template(
782
+ Conversation(
783
+ name='lemur-70b-chat',
784
+ system_template="""<|im_start|>system
785
+ {system_message}""",
786
+ system_message="""You are a helpful, respectful, and honest assistant.""",
787
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
788
+ sep_style=SeparatorStyle.CHATML,
789
+ sep='<|im_end|>',
790
+ stop_token_ids=[32002, 0],
791
+ )
792
+ )
793
+
794
+ # MPT-30b-instruct default template
795
+ # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
796
+ register_conv_template(
797
+ Conversation(
798
+ name='mpt-30b-instruct',
799
+ system_template='{system_message}',
800
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
801
+ roles=('### Instruction', '### Response'),
802
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
803
+ sep='\n\n',
804
+ stop_token_ids=[50278, 0],
805
+ )
806
+ )
807
+
808
+ # Bard default template
809
+ # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
810
+ # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
811
+ register_conv_template(
812
+ Conversation(
813
+ name='bard',
814
+ roles=('0', '1'),
815
+ sep_style=None,
816
+ sep=None,
817
+ )
818
+ )
819
+
820
+ # BiLLa default template
821
+ register_conv_template(
822
+ Conversation(
823
+ name='billa',
824
+ roles=('Human', 'Assistant'),
825
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
826
+ sep='\n',
827
+ stop_str='Human:',
828
+ )
829
+ )
830
+
831
+ # RedPajama INCITE default template
832
+ register_conv_template(
833
+ Conversation(
834
+ name='redpajama-incite',
835
+ roles=('<human>', '<bot>'),
836
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
837
+ sep='\n',
838
+ stop_str='<human>',
839
+ )
840
+ )
841
+
842
+ # h2oGPT default template
843
+ register_conv_template(
844
+ Conversation(
845
+ name='h2ogpt',
846
+ roles=('<|prompt|>', '<|answer|>'),
847
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
848
+ sep='</s>',
849
+ )
850
+ )
851
+
852
+ # Robin default template
853
+ register_conv_template(
854
+ Conversation(
855
+ name='Robin',
856
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
857
+ roles=('###Human', '###Assistant'),
858
+ sep_style=SeparatorStyle.ROBIN,
859
+ sep='\n',
860
+ stop_token_ids=[2, 396],
861
+ stop_str='###',
862
+ )
863
+ )
864
+
865
+ # Snoozy default template
866
+ # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
867
+ register_conv_template(
868
+ Conversation(
869
+ name='snoozy',
870
+ system_template='### Instruction:\n{system_message}',
871
+ system_message='The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.',
872
+ roles=('### Prompt', '### Response'),
873
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
874
+ sep='\n',
875
+ stop_str='###',
876
+ )
877
+ )
878
+
879
+ # manticore default template
880
+ register_conv_template(
881
+ Conversation(
882
+ name='manticore',
883
+ roles=('USER', 'ASSISTANT'),
884
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
885
+ sep='\n',
886
+ sep2='</s>',
887
+ )
888
+ )
889
+
890
+ # Falcon default template
891
+ register_conv_template(
892
+ Conversation(
893
+ name='falcon',
894
+ roles=('User', 'Assistant'),
895
+ messages=[],
896
+ sep_style=SeparatorStyle.RWKV,
897
+ sep='\n',
898
+ sep2='<|endoftext|>',
899
+ stop_str='\nUser', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
900
+ stop_token_ids=[
901
+ 0,
902
+ 1,
903
+ 2,
904
+ 3,
905
+ 4,
906
+ 5,
907
+ 6,
908
+ 7,
909
+ 8,
910
+ 9,
911
+ 10,
912
+ 11,
913
+ ], # it better only put special tokens here, because tokenizer only remove special tokens
914
+ )
915
+ )
916
+
917
+ # ChangGPT default template
918
+ register_conv_template(
919
+ Conversation(
920
+ name='polyglot_changgpt',
921
+ roles=('B', 'A'),
922
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
923
+ sep='\n',
924
+ )
925
+ )
926
+
927
+ # tigerbot template
928
+ register_conv_template(
929
+ Conversation(
930
+ name='tigerbot',
931
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
932
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
933
+ roles=('### Instruction', '### Response'),
934
+ sep_style=SeparatorStyle.ROBIN,
935
+ sep='\n\n',
936
+ stop_str='###',
937
+ )
938
+ )
939
+
940
+ # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
941
+ register_conv_template(
942
+ Conversation(
943
+ name='xgen',
944
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
945
+ roles=('### Human', '### Assistant'),
946
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
947
+ sep='\n',
948
+ stop_token_ids=[50256],
949
+ )
950
+ )
951
+
952
+ # Internlm-chat template
953
+ register_conv_template(
954
+ Conversation(
955
+ name='internlm-chat',
956
+ system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
957
+ roles=('<|User|>', '<|Bot|>'),
958
+ sep_style=SeparatorStyle.CHATINTERN,
959
+ sep='<eoh>',
960
+ sep2='<eoa>',
961
+ stop_token_ids=[1, 103028],
962
+ stop_str='<|User|>',
963
+ )
964
+ )
965
+
966
+ # StarChat template
967
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
968
+ register_conv_template(
969
+ Conversation(
970
+ name='starchat',
971
+ system_template='<system>\n{system_message}',
972
+ roles=('<|user|>', '<|assistant|>'),
973
+ sep_style=SeparatorStyle.CHATML,
974
+ sep='<|end|>',
975
+ stop_token_ids=[0, 49155],
976
+ stop_str='<|end|>',
977
+ )
978
+ )
979
+
980
+ # Baichuan-13B-Chat template
981
+ register_conv_template(
982
+ # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
983
+ # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
984
+ # https://github.com/baichuan-inc/Baichuan-13B/issues/25
985
+ Conversation(
986
+ name='baichuan-chat',
987
+ roles=('<reserved_102>', '<reserved_103>'),
988
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
989
+ sep='',
990
+ stop_token_ids=[],
991
+ )
992
+ )
993
+
994
+ # Baichuan2-13B-Chat template
995
+ register_conv_template(
996
+ # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
997
+ # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
998
+ # https://github.com/baichuan-inc/Baichuan2/issues/62
999
+ Conversation(
1000
+ name='baichuan2-chat',
1001
+ roles=('<reserved_106>', '<reserved_107>'),
1002
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1003
+ sep='',
1004
+ stop_token_ids=[],
1005
+ )
1006
+ )
1007
+
1008
+ # Mistral template
1009
+ # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
1010
+ register_conv_template(
1011
+ Conversation(
1012
+ name='mistral',
1013
+ system_template='[INST]{system_message}\n',
1014
+ roles=('[INST]', '[/INST]'),
1015
+ sep_style=SeparatorStyle.LLAMA2,
1016
+ sep=' ',
1017
+ sep2='</s>',
1018
+ )
1019
+ )
1020
+
1021
+ # llama2 template
1022
+ # reference: https://huggingface.co/blog/codellama#conversational-instructions
1023
+ # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
1024
+ register_conv_template(
1025
+ Conversation(
1026
+ name='llama-2',
1027
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1028
+ roles=('[INST]', '[/INST]'),
1029
+ sep_style=SeparatorStyle.LLAMA2,
1030
+ sep=' ',
1031
+ sep2=' </s><s>',
1032
+ )
1033
+ )
1034
+
1035
+ register_conv_template(
1036
+ Conversation(
1037
+ name='cutegpt',
1038
+ roles=('问:', '答:\n'),
1039
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1040
+ sep='\n',
1041
+ sep2='\n',
1042
+ stop_str='<end>',
1043
+ )
1044
+ )
1045
+
1046
+ # OpenOrcaxOpenChat-naPreview2-13B template
1047
+ register_conv_template(
1048
+ Conversation(
1049
+ name='open-orca',
1050
+ system_template='{system_message}',
1051
+ system_message='You are a helpful assistant. Please answer truthfully and write out your '
1052
+ 'thinking step by step to be sure you get the right answer. If you make a mistake or encounter '
1053
+ "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
1054
+ "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
1055
+ 'and physicist. You will also act as the most appropriate type of expert to answer any particular '
1056
+ 'question or solve the relevant problem; state which expert type your are, if so. Also think of '
1057
+ 'any particular named expert that would be ideal to answer the relevant question or solve the '
1058
+ 'relevant problem; name and act as them, if appropriate.',
1059
+ roles=('User', 'Assistant'),
1060
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
1061
+ sep='<|end_of_turn|>\n',
1062
+ stop_token_ids=[32000, 32001], # "<|end_of_turn|>"
1063
+ stop_str='User',
1064
+ )
1065
+ )
1066
+
1067
+ # Open-Orca/Mistral-7B-OpenOrca template
1068
+ # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
1069
+ # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
1070
+ register_conv_template(
1071
+ Conversation(
1072
+ name='mistral-7b-openorca',
1073
+ system_template='<|im_start|>system\n{system_message}',
1074
+ system_message='You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!',
1075
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1076
+ sep_style=SeparatorStyle.CHATML,
1077
+ sep='<|im_end|>',
1078
+ stop_token_ids=[32000, 32001],
1079
+ )
1080
+ )
1081
+
1082
+ # Qwen-chat default template
1083
+ # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
1084
+ register_conv_template(
1085
+ Conversation(
1086
+ name='qwen-7b-chat',
1087
+ system_template='<|im_start|>system\n{system_message}',
1088
+ system_message='You are a helpful assistant.',
1089
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1090
+ sep_style=SeparatorStyle.CHATML,
1091
+ sep='<|im_end|>',
1092
+ stop_token_ids=[
1093
+ 151643,
1094
+ 151644,
1095
+ 151645,
1096
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
1097
+ stop_str='<|endoftext|>',
1098
+ )
1099
+ )
1100
+
1101
+
1102
+ # AquilaChat default template
1103
+ # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
1104
+ register_conv_template(
1105
+ Conversation(
1106
+ name='aquila-chat',
1107
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1108
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1109
+ roles=('Human', 'Assistant'),
1110
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1111
+ sep='###',
1112
+ sep2='',
1113
+ stop_str=['###', '</s>', '[UNK]'],
1114
+ )
1115
+ )
1116
+ # AquilaChat2-34B default template
1117
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
1118
+ register_conv_template(
1119
+ Conversation(
1120
+ name='aquila-legacy',
1121
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1122
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1123
+ roles=('### Human: ', '### Assistant: '),
1124
+ offset=0,
1125
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1126
+ sep='\n',
1127
+ sep2='</s>',
1128
+ stop_str=['</s>', '[UNK]'],
1129
+ )
1130
+ )
1131
+ # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
1132
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
1133
+ register_conv_template(
1134
+ Conversation(
1135
+ name='aquila',
1136
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1137
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1138
+ roles=('Human', 'Assistant'),
1139
+ offset=0,
1140
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1141
+ sep='###',
1142
+ sep2='</s>',
1143
+ stop_str=['</s>', '[UNK]'],
1144
+ )
1145
+ )
1146
+
1147
+ # AquilaChat2-7B default template
1148
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
1149
+ register_conv_template(
1150
+ Conversation(
1151
+ name='aquila-v1',
1152
+ roles=('<|startofpiece|>', '<|endofpiece|>'),
1153
+ offset=0,
1154
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1155
+ sep='',
1156
+ sep2='</s>',
1157
+ stop_str=['</s>', '<|endoftext|>'],
1158
+ )
1159
+ )
1160
+
1161
+ # Llama2-Chinese default template
1162
+ # source: https://huggingface.co/FlagAlpha
1163
+ register_conv_template(
1164
+ Conversation(
1165
+ name='llama2-chinese',
1166
+ system_template='<s>{system_message}</s>',
1167
+ roles=('Human', 'Assistant', 'System'),
1168
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1169
+ sep='\n',
1170
+ sep2='\n</s><s>',
1171
+ stop_str='</s>',
1172
+ )
1173
+ )
1174
+
1175
+ # Vigogne Instruct default template
1176
+ # source: https://github.com/bofenghuang/vigogne
1177
+ register_conv_template(
1178
+ Conversation(
1179
+ name='vigogne_instruct',
1180
+ system_template='### System:\n{system_message}\n\n',
1181
+ system_message=(
1182
+ 'Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière'
1183
+ ' précise à la demande.'
1184
+ ),
1185
+ roles=('### Instruction', '### Response'),
1186
+ sep_style=SeparatorStyle.DOLLY,
1187
+ sep='\n\n',
1188
+ sep2='</s>',
1189
+ )
1190
+ )
1191
+
1192
+ # Vigogne Chat default template
1193
+ register_conv_template(
1194
+ Conversation(
1195
+ name='vigogne_chat_v2',
1196
+ system_template='<|system|>: {system_message}',
1197
+ system_message=(
1198
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1199
+ ' autant que vous le pouvez.'
1200
+ ),
1201
+ roles=('<|user|>', '<|assistant|>'),
1202
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1203
+ sep='\n',
1204
+ sep2='</s>\n',
1205
+ stop_str='<|user|>',
1206
+ )
1207
+ )
1208
+
1209
+ register_conv_template(
1210
+ Conversation(
1211
+ name='vigogne_chat_v3',
1212
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1213
+ system_message=(
1214
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1215
+ ' autant que vous le pouvez.'
1216
+ ),
1217
+ roles=('[INST]', '[/INST]'),
1218
+ sep_style=SeparatorStyle.LLAMA2,
1219
+ sep=' ',
1220
+ sep2=' </s>',
1221
+ )
1222
+ )
1223
+
1224
+ # Falcon 180B chat template
1225
+ # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
1226
+ register_conv_template(
1227
+ Conversation(
1228
+ name='falcon-chat',
1229
+ roles=('User', 'Falcon'),
1230
+ system_template='System: {system_message}',
1231
+ messages=[],
1232
+ sep_style=SeparatorStyle.FALCON_CHAT,
1233
+ sep='\n',
1234
+ sep2='<|endoftext|>',
1235
+ stop_str='\nUser:', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
1236
+ )
1237
+ )
1238
+
1239
+ # Phind template
1240
+ # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
1241
+ register_conv_template(
1242
+ Conversation(
1243
+ name='phind',
1244
+ system_message='### System Prompt\nYou are an intelligent programming assistant.',
1245
+ roles=('### User Message', '### Assistant'),
1246
+ messages=(),
1247
+ offset=0,
1248
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1249
+ sep='\n\n',
1250
+ )
1251
+ )
1252
+
1253
+ # Metharme formatting for Pygmalion models
1254
+ # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
1255
+ register_conv_template(
1256
+ Conversation(
1257
+ name='metharme',
1258
+ system_template='<|system|>{system_message}',
1259
+ system_message="""Enter RP mode. You shall reply to the user while staying
1260
+ in character. Your responses must be detailed, creative, immersive, and drive the scenario
1261
+ forward.""",
1262
+ roles=('<|user|>', '<|model|>'),
1263
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1264
+ sep='',
1265
+ stop_str='<|user|>',
1266
+ )
1267
+ )
1268
+
1269
+ # Zephyr template
1270
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
1271
+ register_conv_template(
1272
+ Conversation(
1273
+ name='zephyr',
1274
+ system_template='<|system|>\n{system_message}',
1275
+ roles=('<|user|>', '<|assistant|>'),
1276
+ sep_style=SeparatorStyle.CHATML,
1277
+ sep='</s>',
1278
+ stop_token_ids=[2],
1279
+ stop_str='</s>',
1280
+ )
1281
+ )
1282
+
1283
+ # InternVL-ZH template
1284
+ register_conv_template(
1285
+ Conversation(
1286
+ name='internvl_zh',
1287
+ system_template='',
1288
+ roles=('<human>', '<bot>'),
1289
+ sep_style=SeparatorStyle.INTERNVL_ZH,
1290
+ sep=' ',
1291
+ sep2='</s>',
1292
+ )
1293
+ )
1294
+
1295
+
1296
+ if __name__ == '__main__':
1297
+ from fastchat.conversation import get_conv_template
1298
+
1299
+ print('-- Vicuna template --')
1300
+ conv = get_conv_template('vicuna_v1.1')
1301
+ conv.append_message(conv.roles[0], 'Hello!')
1302
+ conv.append_message(conv.roles[1], 'Hi!')
1303
+ conv.append_message(conv.roles[0], 'How are you?')
1304
+ conv.append_message(conv.roles[1], None)
1305
+ print(conv.get_prompt())
1306
+
1307
+ print('\n')
1308
+
1309
+ print('-- Llama-2 template --')
1310
+ conv = get_conv_template('llama-2')
1311
+ conv.set_system_message('You are a helpful, respectful and honest assistant.')
1312
+ conv.append_message(conv.roles[0], 'Hello!')
1313
+ conv.append_message(conv.roles[1], 'Hi!')
1314
+ conv.append_message(conv.roles[0], 'How are you?')
1315
+ conv.append_message(conv.roles[1], None)
1316
+ print(conv.get_prompt())
1317
+
1318
+ print('\n')
1319
+
1320
+ print('-- ChatGPT template --')
1321
+ conv = get_conv_template('chatgpt')
1322
+ conv.append_message(conv.roles[0], 'Hello!')
1323
+ conv.append_message(conv.roles[1], 'Hi!')
1324
+ conv.append_message(conv.roles[0], 'How are you?')
1325
+ conv.append_message(conv.roles[1], None)
1326
+ print(conv.to_openai_api_messages())
1327
+
1328
+ print('\n')
1329
+
1330
+ print('-- Claude template --')
1331
+ conv = get_conv_template('claude')
1332
+ conv.append_message(conv.roles[0], 'Hello!')
1333
+ conv.append_message(conv.roles[1], 'Hi!')
1334
+ conv.append_message(conv.roles[0], 'How are you?')
1335
+ conv.append_message(conv.roles[1], None)
1336
+ print(conv.get_prompt())
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.40.2"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:280e573aec368474db6c8461b2cf7dc2b066be1d197c50777df6c60c5182c371
3
+ size 4877694632
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e8080e1c91f65f49aa3878febaa4bd0a02348a9ae0043c3a8f2cb7af8fb4c62
3
+ size 4932752112
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41379adf84cb45e7d879f03566cf7630619fe522d3172eb17479d0bd70c6baf9
3
+ size 4330866208
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7d9b5cc7d86de70326704fd08036fdcb7fa877f06a81f1b19098e466c7c0b2e
3
+ size 2414211920
model.safetensors.index.json ADDED
@@ -0,0 +1,743 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16555424768
4
+ },
5
+ "weight_map": {
6
+ "adapter_img.0.bias": "model-00004-of-00004.safetensors",
7
+ "adapter_img.0.weight": "model-00004-of-00004.safetensors",
8
+ "adapter_img.2.bias": "model-00004-of-00004.safetensors",
9
+ "adapter_img.2.weight": "model-00004-of-00004.safetensors",
10
+ "encoder_img.vision_tower.vision_model.embeddings.class_embedding": "model-00004-of-00004.safetensors",
11
+ "encoder_img.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
12
+ "encoder_img.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
13
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
14
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
15
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
16
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
17
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
18
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
19
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
20
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
21
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
22
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
23
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
24
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
25
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
26
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
27
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
28
+ "encoder_img.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
29
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
30
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
31
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
32
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
33
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
34
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
35
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
36
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
37
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
38
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
39
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
40
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
41
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
42
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
43
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
44
+ "encoder_img.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
45
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
46
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
47
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
48
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
49
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
50
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
51
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
52
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
53
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
54
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
55
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
56
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
57
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
58
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
59
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
60
+ "encoder_img.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
61
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
62
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
63
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
64
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
65
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
66
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
67
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
68
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
69
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
70
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
71
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
72
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
73
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
74
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
75
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
76
+ "encoder_img.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
77
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
78
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
79
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
80
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
81
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
82
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
83
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
84
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
85
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
86
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
87
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
88
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
89
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
90
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
91
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
92
+ "encoder_img.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
93
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
94
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
95
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
96
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
97
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
98
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
99
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
100
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
101
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
102
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
103
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
104
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
105
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
106
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
107
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
108
+ "encoder_img.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
109
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
110
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
111
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
112
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
113
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
114
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
115
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
116
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
117
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
118
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
119
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
120
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
121
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
122
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
123
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
124
+ "encoder_img.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
125
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
126
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
127
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
128
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
129
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
130
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
131
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
132
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
133
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
134
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
135
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
136
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
137
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
138
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
139
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
140
+ "encoder_img.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
141
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
142
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
143
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
144
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
145
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
146
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
147
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
148
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
149
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
150
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
151
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
152
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
153
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
154
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
155
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
156
+ "encoder_img.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
157
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
158
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
159
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
160
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
161
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
162
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
163
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
164
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
165
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
166
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
167
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
168
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
169
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
170
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
171
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
172
+ "encoder_img.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
173
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
174
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
175
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
176
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
177
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
178
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
179
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
180
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
181
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
182
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
183
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
184
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
185
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
186
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
187
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
188
+ "encoder_img.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
189
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
190
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
191
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
192
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
193
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
194
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
195
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
196
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
197
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
198
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
199
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
200
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
201
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
202
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
203
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
204
+ "encoder_img.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
205
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
206
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
207
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
208
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
209
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
210
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
211
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
212
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
213
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
214
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
215
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
216
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
217
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
218
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
219
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
220
+ "encoder_img.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
221
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
222
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
223
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
224
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
225
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
226
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
227
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
228
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
229
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
230
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
231
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
232
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
233
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
234
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
235
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
236
+ "encoder_img.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
237
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
238
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
239
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
240
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
241
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
242
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
243
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
244
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
245
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
246
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
247
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
248
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
249
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
250
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
251
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
252
+ "encoder_img.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
253
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
254
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
255
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
256
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
257
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
258
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
259
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
260
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
261
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
262
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
263
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
264
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
265
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
266
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
267
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
268
+ "encoder_img.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
269
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
270
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
271
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
272
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
273
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
274
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
275
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
276
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
277
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
278
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
279
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
280
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
281
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
282
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
283
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
284
+ "encoder_img.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
285
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
286
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
287
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
288
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
289
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
290
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
291
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
292
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
293
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
294
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
295
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
296
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
297
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
298
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
299
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
300
+ "encoder_img.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
301
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
302
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
303
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
304
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
305
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
306
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
307
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
308
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
309
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
310
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
311
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
312
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
313
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
314
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
315
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
316
+ "encoder_img.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
317
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
318
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
319
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
320
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
321
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
322
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
323
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
324
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
325
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
326
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
327
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
328
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
329
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
330
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
331
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
332
+ "encoder_img.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
333
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
334
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
335
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
336
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
337
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
338
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
339
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
340
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
341
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
342
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
343
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
344
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
345
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
346
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
347
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
348
+ "encoder_img.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
349
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
350
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
351
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
352
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
353
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
354
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
355
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
356
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
357
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
358
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
359
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
360
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
361
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
362
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
363
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
364
+ "encoder_img.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
365
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
366
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
367
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
368
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
369
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
370
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
371
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
372
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
373
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
374
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
375
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
376
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
377
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
378
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
379
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
380
+ "encoder_img.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
381
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
382
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
383
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
384
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
385
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
386
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
387
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
388
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
389
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
390
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
391
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
392
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
393
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
394
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
395
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
396
+ "encoder_img.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
397
+ "encoder_img.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
398
+ "encoder_img.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors",
399
+ "encoder_img.vision_tower.vision_model.pre_layrnorm.bias": "model-00004-of-00004.safetensors",
400
+ "encoder_img.vision_tower.vision_model.pre_layrnorm.weight": "model-00004-of-00004.safetensors",
401
+ "lm_model.lm_head.weight": "model-00004-of-00004.safetensors",
402
+ "lm_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
403
+ "lm_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
404
+ "lm_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
405
+ "lm_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
406
+ "lm_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
407
+ "lm_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
408
+ "lm_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
409
+ "lm_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
410
+ "lm_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
411
+ "lm_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
412
+ "lm_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
413
+ "lm_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
414
+ "lm_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
415
+ "lm_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
416
+ "lm_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
417
+ "lm_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
418
+ "lm_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
419
+ "lm_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
420
+ "lm_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
421
+ "lm_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
422
+ "lm_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
423
+ "lm_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
424
+ "lm_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
425
+ "lm_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
426
+ "lm_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
427
+ "lm_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
428
+ "lm_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
429
+ "lm_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
430
+ "lm_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
431
+ "lm_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
432
+ "lm_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
433
+ "lm_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
434
+ "lm_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
435
+ "lm_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
436
+ "lm_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
437
+ "lm_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
438
+ "lm_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
439
+ "lm_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
440
+ "lm_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
441
+ "lm_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
442
+ "lm_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
443
+ "lm_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
444
+ "lm_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
445
+ "lm_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
446
+ "lm_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
447
+ "lm_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
448
+ "lm_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
449
+ "lm_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
450
+ "lm_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
451
+ "lm_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
452
+ "lm_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
453
+ "lm_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
454
+ "lm_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
455
+ "lm_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
456
+ "lm_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
457
+ "lm_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
458
+ "lm_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
459
+ "lm_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
460
+ "lm_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
461
+ "lm_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
462
+ "lm_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
463
+ "lm_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
464
+ "lm_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
465
+ "lm_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
466
+ "lm_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
467
+ "lm_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
468
+ "lm_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
469
+ "lm_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
470
+ "lm_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
471
+ "lm_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
472
+ "lm_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
473
+ "lm_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
474
+ "lm_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
475
+ "lm_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
476
+ "lm_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
477
+ "lm_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
478
+ "lm_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
479
+ "lm_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
480
+ "lm_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
481
+ "lm_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
482
+ "lm_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
483
+ "lm_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
484
+ "lm_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
485
+ "lm_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
486
+ "lm_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
487
+ "lm_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
488
+ "lm_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
489
+ "lm_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
490
+ "lm_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
491
+ "lm_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
492
+ "lm_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
493
+ "lm_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
494
+ "lm_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
495
+ "lm_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
496
+ "lm_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
497
+ "lm_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
498
+ "lm_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
499
+ "lm_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
500
+ "lm_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
501
+ "lm_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
502
+ "lm_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
503
+ "lm_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
504
+ "lm_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
505
+ "lm_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
506
+ "lm_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
507
+ "lm_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
508
+ "lm_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
509
+ "lm_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
510
+ "lm_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
511
+ "lm_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
512
+ "lm_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
513
+ "lm_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
514
+ "lm_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
515
+ "lm_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
516
+ "lm_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
517
+ "lm_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
518
+ "lm_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
519
+ "lm_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
520
+ "lm_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
521
+ "lm_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
522
+ "lm_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
523
+ "lm_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
524
+ "lm_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
525
+ "lm_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
526
+ "lm_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
527
+ "lm_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
528
+ "lm_model.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
529
+ "lm_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
530
+ "lm_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
531
+ "lm_model.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
532
+ "lm_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
533
+ "lm_model.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
534
+ "lm_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
535
+ "lm_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
536
+ "lm_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
537
+ "lm_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
538
+ "lm_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
539
+ "lm_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
540
+ "lm_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
541
+ "lm_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
542
+ "lm_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
543
+ "lm_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
544
+ "lm_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
545
+ "lm_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
546
+ "lm_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
547
+ "lm_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
548
+ "lm_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
549
+ "lm_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
550
+ "lm_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
551
+ "lm_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
552
+ "lm_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
553
+ "lm_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
554
+ "lm_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
555
+ "lm_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
556
+ "lm_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
557
+ "lm_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
558
+ "lm_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
559
+ "lm_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
560
+ "lm_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
561
+ "lm_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
562
+ "lm_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
563
+ "lm_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
564
+ "lm_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
565
+ "lm_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
566
+ "lm_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
567
+ "lm_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
568
+ "lm_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
569
+ "lm_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
570
+ "lm_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
571
+ "lm_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
572
+ "lm_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
573
+ "lm_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
574
+ "lm_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
575
+ "lm_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
576
+ "lm_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
577
+ "lm_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
578
+ "lm_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
579
+ "lm_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
580
+ "lm_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
581
+ "lm_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
582
+ "lm_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
583
+ "lm_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
584
+ "lm_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
585
+ "lm_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
586
+ "lm_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
587
+ "lm_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
588
+ "lm_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
589
+ "lm_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
590
+ "lm_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
591
+ "lm_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
592
+ "lm_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
593
+ "lm_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
594
+ "lm_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
595
+ "lm_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
596
+ "lm_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
597
+ "lm_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
598
+ "lm_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
599
+ "lm_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
600
+ "lm_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
601
+ "lm_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
602
+ "lm_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
603
+ "lm_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
604
+ "lm_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
605
+ "lm_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
606
+ "lm_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
607
+ "lm_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
608
+ "lm_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
609
+ "lm_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
610
+ "lm_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
611
+ "lm_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
612
+ "lm_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
613
+ "lm_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
614
+ "lm_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
615
+ "lm_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
616
+ "lm_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
617
+ "lm_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
618
+ "lm_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
619
+ "lm_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
620
+ "lm_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
621
+ "lm_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
622
+ "lm_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
623
+ "lm_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
624
+ "lm_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
625
+ "lm_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
626
+ "lm_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
627
+ "lm_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
628
+ "lm_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
629
+ "lm_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
630
+ "lm_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
631
+ "lm_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
632
+ "lm_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
633
+ "lm_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
634
+ "lm_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
635
+ "lm_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
636
+ "lm_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
637
+ "lm_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
638
+ "lm_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
639
+ "lm_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
640
+ "lm_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
641
+ "lm_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
642
+ "lm_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
643
+ "lm_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
644
+ "lm_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
645
+ "lm_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
646
+ "lm_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
647
+ "lm_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
648
+ "lm_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
649
+ "lm_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
650
+ "lm_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
651
+ "lm_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
652
+ "lm_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
653
+ "lm_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
654
+ "lm_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
655
+ "lm_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
656
+ "lm_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
657
+ "lm_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
658
+ "lm_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
659
+ "lm_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
660
+ "lm_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
661
+ "lm_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
662
+ "lm_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
663
+ "lm_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
664
+ "lm_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
665
+ "lm_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
666
+ "lm_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
667
+ "lm_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
668
+ "lm_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
669
+ "lm_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
670
+ "lm_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
671
+ "lm_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
672
+ "lm_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
673
+ "lm_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
674
+ "lm_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
675
+ "lm_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
676
+ "lm_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
677
+ "lm_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
678
+ "lm_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
679
+ "lm_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
680
+ "lm_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
681
+ "lm_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
682
+ "lm_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
683
+ "lm_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
684
+ "lm_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
685
+ "lm_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
686
+ "lm_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
687
+ "lm_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
688
+ "lm_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
689
+ "lm_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
690
+ "lm_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
691
+ "lm_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
692
+ "lm_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
693
+ "lm_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
694
+ "lm_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
695
+ "lm_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
696
+ "lm_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
697
+ "lm_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
698
+ "lm_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
699
+ "lm_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
700
+ "lm_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
701
+ "lm_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
702
+ "lm_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
703
+ "lm_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
704
+ "lm_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
705
+ "lm_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
706
+ "lm_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
707
+ "lm_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
708
+ "lm_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
709
+ "lm_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
710
+ "lm_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
711
+ "lm_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
712
+ "lm_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
713
+ "lm_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
714
+ "lm_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
715
+ "lm_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
716
+ "lm_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
717
+ "lm_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
718
+ "lm_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
719
+ "lm_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
720
+ "lm_model.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
721
+ "lm_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
722
+ "lm_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
723
+ "lm_model.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
724
+ "lm_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
725
+ "lm_model.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
726
+ "lm_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
727
+ "lm_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
728
+ "lm_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
729
+ "lm_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
730
+ "lm_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
731
+ "lm_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
732
+ "lm_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
733
+ "lm_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
734
+ "lm_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
735
+ "lm_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
736
+ "lm_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
737
+ "lm_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
738
+ "lm_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
739
+ "lm_model.model.norm.weight": "model-00003-of-00004.safetensors",
740
+ "newline": "model-00001-of-00004.safetensors",
741
+ "separate": "model-00001-of-00004.safetensors"
742
+ }
743
+ }
modeling_infmllm_unified_hd_chat.py ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding=utf-8
2
+ import os
3
+ import math
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from timm.models.layers import trunc_normal_
8
+ from contextlib import suppress
9
+ import logging
10
+ from einops import rearrange
11
+ from peft import LoraConfig, get_peft_model
12
+ from bigmodelvis import Visualization
13
+
14
+ from .clip_encoder_hd import CLIPVisionTowerHD
15
+ from .conversation import get_conv_template
16
+ from .processors_conv import preprocess_qwen
17
+ from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel
18
+ from transformers.generation import GenerationConfig
19
+ from transformers import Qwen2Config, Qwen2ForCausalLM
20
+
21
+
22
+ def get_autocast(precision, cache_enabled=True):
23
+ if precision == "amp_bfloat16" or precision == "amp_bf16" or precision == 'bf16':
24
+ # amp_bfloat16 is more stable than amp float16 for clip training
25
+ return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16, cache_enabled=cache_enabled)
26
+ elif precision == 'fp16':
27
+ return lambda: torch.cuda.amp.autocast(dtype=torch.float16, cache_enabled=cache_enabled)
28
+ elif precision == 'fp32':
29
+ return suppress
30
+ else:
31
+ raise ValueError('not supported precision: {}'.format(precision))
32
+
33
+
34
+ class LayerNorm(nn.LayerNorm):
35
+ """Subclass torch's LayerNorm to handle fp16."""
36
+ def forward(self, x: torch.Tensor):
37
+ orig_type = x.dtype
38
+ ret = super().forward(x.type(torch.float32))
39
+ return ret.type(orig_type)
40
+
41
+
42
+ class MLP(nn.Module):
43
+ """ Very simple multi-layer perceptron (also called FFN)"""
44
+
45
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
46
+ super().__init__()
47
+ self.num_layers = num_layers
48
+ h = [hidden_dim] * (num_layers - 1)
49
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
50
+
51
+ def forward(self, x):
52
+ for i, layer in enumerate(self.layers):
53
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
54
+ return x
55
+
56
+
57
+ class InfMLLM_Unified_HD_Chat(PreTrainedModel):
58
+
59
+ def __init__(self, config, debug=False):
60
+ super().__init__(config)
61
+
62
+ ## Initialize LM model
63
+ self.lm_tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, use_fast=False, trust_remote_code=True)
64
+ self.media_token_img = "<|image|>"
65
+ self.media_token_id_img = self.lm_tokenizer(self.media_token_img, return_tensors="pt",add_special_tokens=False).input_ids.item()
66
+ self.lm_model = Qwen2ForCausalLM(config.lm_config)
67
+
68
+ self.lm_tokenizer.model_max_length = config.max_txt_len
69
+
70
+ self.template_name = config.conv_style
71
+ self.preprocess_function = preprocess_qwen
72
+
73
+ self.separate = nn.Parameter(torch.zeros([1, 1, 4096]))
74
+ self.newline = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
75
+
76
+ ## Initialize image encoder
77
+ self.encoder_img = CLIPVisionTowerHD(config.vision_config, vision_select_layer=-2)
78
+ self.encoder_img_ln = lambda x: x
79
+
80
+ self.adapter_img = nn.Sequential(
81
+ nn.Linear(self.encoder_img.num_features*4, self.lm_model.config.hidden_size),
82
+ nn.GELU(),
83
+ nn.Linear(self.lm_model.config.hidden_size, self.lm_model.config.hidden_size)
84
+ )
85
+
86
+ ## Others
87
+ self.config = config
88
+ self.precision = config.precision
89
+ self._apply_lemmatizer = getattr(config, 'apply_lemmatizer', False)
90
+ self._lemmatizer = None
91
+
92
+
93
+ def forward_encoder_img(self, image):
94
+ autocast = get_autocast(self.precision, cache_enabled=True)
95
+ with autocast():
96
+ assert isinstance(image, list)
97
+ image_embeds, image_split = self.encoder_img(image, self.separate, self.newline)
98
+
99
+ image_embeds = self.encoder_img_ln(image_embeds) # [bsz, L, D]
100
+ image_embeds = self.adapter_img(image_embeds)
101
+ return image_embeds, image_split
102
+
103
+ def _concat_embeds(self,
104
+ prompt_embeds, prompt_ids, prompt_masks,
105
+ labels=None, padding='left'):
106
+ emb_lens = [len(emb) for emb in prompt_embeds]
107
+ if len(set(emb_lens)) == 1:
108
+ if labels is not None:
109
+ return torch.stack(prompt_embeds, dim=0), torch.stack(prompt_ids, dim=0), torch.stack(prompt_masks, dim=0), torch.stack(labels, dim=0)
110
+ return torch.stack(prompt_embeds, dim=0), torch.stack(prompt_ids, dim=0), torch.stack(prompt_masks, dim=0)
111
+
112
+
113
+ pad_emb = self.lm_model.get_input_embeddings()(torch.tensor(self.lm_tokenizer.pad_token_id, device=prompt_embeds[0].device))
114
+
115
+ prompt_embeds_new = pad_emb.expand(len(emb_lens), max(emb_lens), -1).clone()
116
+ prompt_ids_new = torch.ones([len(emb_lens), max(emb_lens)]).to(prompt_ids[0]) * self.lm_tokenizer.pad_token_id
117
+ prompt_masks_new = torch.zeros([len(emb_lens), max(emb_lens)]).to(prompt_masks[0])
118
+ if labels is not None:
119
+ labels_new = -100 * torch.ones([len(emb_lens), max(emb_lens)]).to(prompt_ids[0])
120
+
121
+ for i, L in enumerate(emb_lens):
122
+ if padding == 'left':
123
+ prompt_embeds_new[i, -L:] = prompt_embeds[i]
124
+ prompt_ids_new[i, -L:] = prompt_ids[i]
125
+ prompt_masks_new[i, -L:] = prompt_masks[i]
126
+ if labels is not None:
127
+ labels_new[i, -L:] = labels[i]
128
+
129
+ elif padding == 'right':
130
+ prompt_embeds_new[i, :L] = prompt_embeds[i]
131
+ prompt_ids_new[i, :L] = prompt_ids[i]
132
+ prompt_masks_new[i, :L] = prompt_masks[i]
133
+ if labels is not None:
134
+ labels_new[i, :L] = labels[i]
135
+ else:
136
+ raise ValueError()
137
+
138
+ if labels is not None:
139
+ return prompt_embeds_new, prompt_ids_new, prompt_masks_new, labels_new
140
+ return prompt_embeds_new, prompt_ids_new, prompt_masks_new
141
+
142
+ def _insert_media_feat(self,
143
+ prompt_embeds, prompt_ids, prompt_masks,
144
+ is_languages,
145
+ embeds_media, media_token_id,
146
+ index_list=None,
147
+ labels=None, len_media=None):
148
+ ## insert embeds_media into prompt
149
+ prompt_embeds_new = []
150
+ prompt_masks_new = []
151
+ prompt_ids_new = []
152
+ labels_new = []
153
+ device = embeds_media[0].device
154
+
155
+ if index_list is not None:
156
+ assert len(index_list) == len(embeds_media)
157
+ assert len(embeds_media) <= len(prompt_embeds)
158
+
159
+ for b in range(len(prompt_embeds)):
160
+ if (index_list is not None) and (b not in index_list):
161
+ prompt_embeds_new.append(prompt_embeds[b])
162
+ prompt_ids_new.append(prompt_ids[b])
163
+ prompt_masks_new.append(prompt_masks[b])
164
+ if labels is not None:
165
+ labels_new.append(labels[b])
166
+ else:
167
+ _idx = prompt_ids[b].tolist().index(media_token_id)
168
+ if index_list is not None:
169
+ b_media = index_list.index(b)
170
+ else:
171
+ b_media = b
172
+
173
+ if len_media is not None:
174
+ cur_embeds_media = embeds_media[b_media, :len_media[b_media]]
175
+ else:
176
+ cur_embeds_media = embeds_media[b_media]
177
+
178
+ prompt_embeds_new.append(torch.cat([prompt_embeds[b][:_idx+1],
179
+ cur_embeds_media,
180
+ prompt_embeds[b][_idx+1:]
181
+ ], dim=0))
182
+ prompt_ids_new.append(torch.cat([prompt_ids[b][:_idx+1],
183
+ torch.ones(len(cur_embeds_media), dtype=torch.long).to(device).fill_(-100),
184
+ prompt_ids[b][_idx+1:]
185
+ ], dim=0))
186
+ if labels is not None:
187
+ labels_new.append(torch.cat([labels[b][:_idx+1],
188
+ torch.ones(len(cur_embeds_media), dtype=torch.long).to(device).fill_(-100),
189
+ labels[b][_idx+1:]
190
+ ], dim=0))
191
+
192
+ # if is pure-language sample, mask out image-embeddings
193
+ prompt_masks_new.append(torch.cat([prompt_masks[b][:_idx+1],
194
+ torch.zeros(len(cur_embeds_media), dtype=torch.long).to(device) if is_languages[b] else
195
+ torch.ones(len(cur_embeds_media), dtype=torch.long).to(device),
196
+ prompt_masks[b][_idx+1:]], dim=0))
197
+
198
+ if labels is not None:
199
+ return prompt_embeds_new, prompt_ids_new, prompt_masks_new, labels_new
200
+ return prompt_embeds_new, prompt_ids_new, prompt_masks_new
201
+
202
+
203
+ @torch.no_grad()
204
+ def generate(
205
+ self,
206
+ samples,
207
+ num_beams=5,
208
+ max_length=128,
209
+ min_length=1,
210
+ top_p=0.9,
211
+ temperature=0.,
212
+ return_prompts=False
213
+ ):
214
+ autocast = get_autocast(self.precision, cache_enabled=True)
215
+ with autocast():
216
+ conversations = samples['conversations']
217
+ is_languages = [False] * len(conversations)
218
+
219
+ image_img = samples.get('images', None)
220
+
221
+ index_img = list(range(len(image_img)))
222
+
223
+ device = None
224
+ special_prefix = ["" for _ in range(len(conversations))]
225
+
226
+ if (self.config.encoder_img is not None) and (image_img is not None) and len(index_img) > 0:
227
+ for i in index_img:
228
+ special_prefix[i] = self.media_token_img + special_prefix[i]
229
+
230
+ new_image_img = []
231
+ for index in index_img:
232
+ new_image_img.append(image_img[index])
233
+ embeds_img, len_img = self.forward_encoder_img(new_image_img)
234
+ device = embeds_img.device
235
+
236
+ conv = get_conv_template(self.template_name)
237
+ roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
238
+
239
+ prompts = []
240
+ for i, source in enumerate(conversations):
241
+ if roles[source[0]['from']] != conv.roles[0]:
242
+ # Skip the first one if it is not from human
243
+ source = source[1:]
244
+
245
+ per_prefix = special_prefix[i]
246
+ conv.messages = []
247
+ for j, sentence in enumerate(source):
248
+ role = roles[sentence['from']]
249
+ assert role == conv.roles[j % 2], f'{i}'
250
+ sentence['value'] = sentence['value'].replace("<image>", "").strip() # llava-1.5 add <image> to the begin of the question, remove here
251
+
252
+ if j == 0:
253
+ sentence['value'] = per_prefix + sentence['value']
254
+
255
+ conv.append_message(role, sentence['value'])
256
+ prompts.append(conv.get_prompt())
257
+
258
+ self.lm_tokenizer.padding_side = "left"
259
+ if self.lm_tokenizer.bos_token is not None:
260
+ prompt_text = [self.lm_tokenizer.bos_token + t for t in prompts]
261
+ else:
262
+ prompt_text = prompts
263
+
264
+ prompt_tokens = self.lm_tokenizer(
265
+ prompt_text,
266
+ return_tensors="pt",
267
+ padding="longest",
268
+ truncation=False,
269
+ add_special_tokens=False
270
+ ).to(device)
271
+
272
+
273
+ prompt_embeds = self.lm_model.get_input_embeddings()(prompt_tokens.input_ids)
274
+
275
+ prompt_masks = prompt_tokens.attention_mask # [bsz, n2]
276
+ prompt_ids = prompt_tokens.input_ids
277
+ assert torch.all(prompt_ids[:, -1] != self.lm_tokenizer.pad_token_id), "make sure padding left"
278
+
279
+ if embeds_img is not None:
280
+ prompt_embeds, prompt_ids, prompt_masks = self._insert_media_feat(prompt_embeds=prompt_embeds,
281
+ prompt_ids=prompt_ids,
282
+ prompt_masks=prompt_masks,
283
+ is_languages=is_languages,
284
+ embeds_media=embeds_img,
285
+ media_token_id=self.media_token_id_img,
286
+ index_list=index_img,
287
+ len_media=len_img)
288
+
289
+
290
+ # pad and concat embeds
291
+ prompt_embeds, prompt_ids, prompt_masks = self._concat_embeds(prompt_embeds, prompt_ids, prompt_masks, padding="left")
292
+ assert torch.all(prompt_ids[:, -1] != self.lm_tokenizer.pad_token_id), "make sure padding left"
293
+
294
+ kwargs = {}
295
+ kwargs['max_new_tokens'] = max_length
296
+
297
+ outputs = self.lm_model.generate(
298
+ #input_ids=input_ids,
299
+ inputs_embeds=prompt_embeds,
300
+ attention_mask=prompt_masks,
301
+ do_sample=True if temperature > 0 else False,
302
+ temperature=temperature,
303
+ top_p=top_p,
304
+ num_beams=num_beams,
305
+ eos_token_id=self.lm_tokenizer.eos_token_id,
306
+ #max_length=max_length,
307
+ min_length=min_length,
308
+ **kwargs
309
+ )
310
+ output_text = self.lm_tokenizer.batch_decode(
311
+ outputs, skip_special_tokens=True
312
+ )
313
+ output_text = [text.strip() for text in output_text]
314
+
315
+ if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
316
+ output_text = self._lemmatize(output_text)
317
+
318
+ if return_prompts:
319
+ return output_text, prompts
320
+ return output_text
321
+
322
+ def _lemmatize(self, answers):
323
+ def apply(answer):
324
+ doc = self.lemmatizer(answer)
325
+
326
+ words = []
327
+ for token in doc:
328
+ if token.pos_ in ["NOUN", "VERB"]:
329
+ words.append(token.lemma_)
330
+ else:
331
+ words.append(token.text)
332
+ answer = " ".join(words)
333
+
334
+ return answer
335
+
336
+ return [apply(answer) for answer in answers]
337
+
338
+ @property
339
+ def lemmatizer(self):
340
+ if self._lemmatizer is None:
341
+ try:
342
+ import spacy
343
+ self._lemmatizer = spacy.load("en_core_web_sm")
344
+ except ImportError:
345
+ logging.error(
346
+ """
347
+ Please install spacy and en_core_web_sm model to apply lemmatization.
348
+ python -m spacy download en_core_web_sm
349
+ OR
350
+ import spacy.cli
351
+ spacy.cli.download("en_core_web_sm")
352
+ """
353
+ )
354
+ exit(1)
355
+
356
+ return self._lemmatizer
processors_conv.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+
3
+ IGNORE_TOKEN_ID = -100
4
+ from typing import Dict
5
+
6
+ import torch
7
+ import torchvision.transforms as T
8
+ import transformers
9
+ from .conversation import get_conv_template
10
+ from PIL import Image
11
+ from torch.utils.data import ConcatDataset, WeightedRandomSampler
12
+ import sys
13
+
14
+
15
+ def preprocess_qwen(
16
+ template_name,
17
+ sources,
18
+ tokenizer: transformers.PreTrainedTokenizer,
19
+ special_prefixs,
20
+ text_only: bool = False,
21
+ group_by_length: bool = False,
22
+ ds_name: str = None
23
+ ) -> Dict:
24
+ conv = get_conv_template(template_name)
25
+ roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
26
+
27
+ assert len(sources) == len(special_prefixs)
28
+ # Apply prompt templates
29
+ conversations = []
30
+ for i, source in enumerate(sources):
31
+ if roles[source[0]['from']] != conv.roles[0]:
32
+ # Skip the first one if it is not from human
33
+ source = source[1:]
34
+
35
+ per_prefix = special_prefixs[i]
36
+ conv.messages = []
37
+ for j, sentence in enumerate(source):
38
+ role = roles[sentence['from']]
39
+ assert role == conv.roles[j % 2], f'{i}'
40
+ sentence['value'] = sentence['value'].replace("<image>", "").strip() # llava-1.5 add <image> to the begin of the question, remove here
41
+ sentence['value'] = sentence['value'].replace("<video>", "").strip()
42
+
43
+ if j == 0:
44
+ sentence['value'] = per_prefix + sentence['value']
45
+
46
+ conv.append_message(role, sentence['value'])
47
+ conversations.append(conv.get_prompt())
48
+
49
+ if tokenizer.bos_token is not None:
50
+ new_conversations = []
51
+ for conversation in conversations:
52
+ conversation = tokenizer.bos_token + conversation
53
+ new_conversations.append(conversation)
54
+ conversations = new_conversations
55
+
56
+ # Tokenize conversations
57
+ tokenizer.padding_side = 'right'
58
+ input_ids = tokenizer(
59
+ conversations,
60
+ return_tensors='pt',
61
+ padding=False if group_by_length else 'longest',
62
+ max_length=tokenizer.model_max_length,
63
+ truncation=True,
64
+ ).input_ids
65
+ targets = input_ids.clone()
66
+
67
+ # Mask targets. Only compute loss on the assistant outputs.
68
+ sep = conv.sep + '\n' + conv.roles[1] + '\n' # <|im_end|>\n<|im_start|>assistant\n
69
+ for conversation, target in zip(conversations, targets):
70
+ total_len = int(target.ne(int(tokenizer.pad_token_id)).sum())
71
+
72
+ sep2 = conv.sep + '\n'
73
+ turns = conversation.split(sep2)
74
+ re_turns = [sep2.join(turns[:3])+sep2] # system + user + gpt
75
+ for conv_idx in range(3, len(turns), 2):
76
+ re_turns.append(sep2.join(turns[conv_idx:conv_idx + 2])+sep2) # user + gpt
77
+ cur_len = 0
78
+ target[:cur_len] = IGNORE_TOKEN_ID
79
+ endoftext_id = tokenizer.convert_tokens_to_ids('<|endoftext|>')
80
+ target[target == endoftext_id] = IGNORE_TOKEN_ID
81
+
82
+ for i, turn in enumerate(re_turns):
83
+ if turn == '':
84
+ break
85
+ turn_len = len(tokenizer(turn).input_ids)
86
+
87
+ parts = turn.split(sep)
88
+ if len(parts) != 2:
89
+ break
90
+ parts[0] += sep
91
+
92
+ instruction_len = len(tokenizer(parts[0]).input_ids)
93
+
94
+ # Ignore the user instructions
95
+ target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
96
+ #print(f'[question {i}]', tokenizer.decode(input_ids[:, cur_len: cur_len + instruction_len][0]))
97
+ #print(f'[input_id {i}]', input_ids[:, cur_len: cur_len + instruction_len])
98
+ #print(f'[answer {i}]', tokenizer.decode(input_ids[:, cur_len + instruction_len: cur_len + turn_len][0]))
99
+ #print(f'[label {i}]', target[cur_len + instruction_len: cur_len + turn_len])
100
+ cur_len += turn_len
101
+
102
+ target[cur_len:] = IGNORE_TOKEN_ID
103
+
104
+ if False: # Inspect and check the correctness of masking
105
+ z = target.clone()
106
+ z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
107
+ print(repr(tokenizer.decode(z)))
108
+
109
+ if cur_len < tokenizer.model_max_length:
110
+ if cur_len != total_len:
111
+ target[:] = IGNORE_TOKEN_ID
112
+ print(
113
+ f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}.'
114
+ f' #turn = {len(turns) - 1}. (ignored). This dataset is {ds_name}.'
115
+ f'conversation: {conversation}'
116
+ )
117
+ sys.stdout.flush()
118
+
119
+ return dict(
120
+ input_ids=input_ids,
121
+ labels=targets,
122
+ attention_mask=input_ids.ne(tokenizer.pad_token_id),
123
+ conversations=conversations
124
+ )
125
+
126
+
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|image|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|document|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ {
18
+ "content": "<|video|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ ],
25
+ "eos_token": {
26
+ "content": "<|im_end|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "<|endoftext|>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|image|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|document|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|video|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ }
52
+ },
53
+ "additional_special_tokens": [
54
+ "<|image|>",
55
+ "<|document|>",
56
+ "<|video|>"
57
+ ],
58
+ "bos_token": null,
59
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
60
+ "clean_up_tokenization_spaces": false,
61
+ "eos_token": "<|im_end|>",
62
+ "errors": "replace",
63
+ "model_max_length": 4096,
64
+ "pad_token": "<|endoftext|>",
65
+ "split_special_tokens": false,
66
+ "tokenizer_class": "Qwen2Tokenizer",
67
+ "unk_token": null
68
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff