model / README.md
influencer's picture
Model save
63c5da1 verified
|
raw
history blame
3.39 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: model
    results: []

model

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5555
  • Accuracy: 0.7471
  • Roc Auc: 0.7154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Roc Auc
0.5439 0.14 50 0.5544 0.7429 0.6942
0.5448 0.29 100 0.6509 0.74 0.6629
0.6165 0.43 150 0.5599 0.7129 0.7074
0.5916 0.57 200 0.5959 0.6829 0.7009
0.5285 0.71 250 0.5801 0.73 0.6975
0.4861 0.86 300 0.5866 0.7486 0.6621
0.5428 1.0 350 0.5477 0.7443 0.6801
0.5535 1.14 400 0.5360 0.7529 0.7033
0.441 1.29 450 0.5850 0.7571 0.7078
0.6003 1.43 500 0.5268 0.7586 0.7243
0.4686 1.57 550 0.5223 0.7571 0.7306
0.5477 1.71 600 0.5753 0.7529 0.7188
0.5633 1.86 650 0.5456 0.74 0.7246
0.4799 2.0 700 0.5442 0.7386 0.7018
0.5373 2.14 750 0.6535 0.6443 0.6950
0.4244 2.29 800 0.5304 0.7514 0.7145
0.4984 2.43 850 0.5739 0.7043 0.6936
0.5012 2.57 900 0.5405 0.7514 0.7102
0.4852 2.71 950 0.5314 0.7471 0.7290
0.5498 2.86 1000 0.5490 0.7429 0.7094
0.4547 3.0 1050 0.6028 0.7443 0.7264
0.5145 3.14 1100 0.5699 0.7214 0.7028
0.475 3.29 1150 0.5493 0.7457 0.7052
0.4632 3.43 1200 0.5570 0.7414 0.7018
0.408 3.57 1250 0.5744 0.7514 0.6993
0.3851 3.71 1300 0.5600 0.73 0.7102
0.4093 3.86 1350 0.5587 0.7557 0.7143
0.4628 4.0 1400 0.5555 0.7471 0.7154

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2