File size: 3,394 Bytes
63c5da1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5555
- Accuracy: 0.7471
- Roc Auc: 0.7154

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|
| 0.5439        | 0.14  | 50   | 0.5544          | 0.7429   | 0.6942  |
| 0.5448        | 0.29  | 100  | 0.6509          | 0.74     | 0.6629  |
| 0.6165        | 0.43  | 150  | 0.5599          | 0.7129   | 0.7074  |
| 0.5916        | 0.57  | 200  | 0.5959          | 0.6829   | 0.7009  |
| 0.5285        | 0.71  | 250  | 0.5801          | 0.73     | 0.6975  |
| 0.4861        | 0.86  | 300  | 0.5866          | 0.7486   | 0.6621  |
| 0.5428        | 1.0   | 350  | 0.5477          | 0.7443   | 0.6801  |
| 0.5535        | 1.14  | 400  | 0.5360          | 0.7529   | 0.7033  |
| 0.441         | 1.29  | 450  | 0.5850          | 0.7571   | 0.7078  |
| 0.6003        | 1.43  | 500  | 0.5268          | 0.7586   | 0.7243  |
| 0.4686        | 1.57  | 550  | 0.5223          | 0.7571   | 0.7306  |
| 0.5477        | 1.71  | 600  | 0.5753          | 0.7529   | 0.7188  |
| 0.5633        | 1.86  | 650  | 0.5456          | 0.74     | 0.7246  |
| 0.4799        | 2.0   | 700  | 0.5442          | 0.7386   | 0.7018  |
| 0.5373        | 2.14  | 750  | 0.6535          | 0.6443   | 0.6950  |
| 0.4244        | 2.29  | 800  | 0.5304          | 0.7514   | 0.7145  |
| 0.4984        | 2.43  | 850  | 0.5739          | 0.7043   | 0.6936  |
| 0.5012        | 2.57  | 900  | 0.5405          | 0.7514   | 0.7102  |
| 0.4852        | 2.71  | 950  | 0.5314          | 0.7471   | 0.7290  |
| 0.5498        | 2.86  | 1000 | 0.5490          | 0.7429   | 0.7094  |
| 0.4547        | 3.0   | 1050 | 0.6028          | 0.7443   | 0.7264  |
| 0.5145        | 3.14  | 1100 | 0.5699          | 0.7214   | 0.7028  |
| 0.475         | 3.29  | 1150 | 0.5493          | 0.7457   | 0.7052  |
| 0.4632        | 3.43  | 1200 | 0.5570          | 0.7414   | 0.7018  |
| 0.408         | 3.57  | 1250 | 0.5744          | 0.7514   | 0.6993  |
| 0.3851        | 3.71  | 1300 | 0.5600          | 0.73     | 0.7102  |
| 0.4093        | 3.86  | 1350 | 0.5587          | 0.7557   | 0.7143  |
| 0.4628        | 4.0   | 1400 | 0.5555          | 0.7471   | 0.7154  |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2