Edit model card

wav2vec2-large-xls-r-300m-georgian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3666
  • Wer: 0.4211

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8805 5.95 500 0.7547 0.8438
1.2123 11.9 1000 0.4732 0.6542
1.0822 17.86 1500 0.4027 0.5778
0.9938 23.81 2000 0.3847 0.5524
0.9383 29.76 2500 0.3845 0.5204
0.8932 35.71 3000 0.3833 0.5297
0.8495 41.67 3500 0.3759 0.5036
0.8201 47.62 4000 0.3616 0.4859
0.7794 53.57 4500 0.3874 0.4938
0.735 59.52 5000 0.3748 0.4782
0.7082 65.48 5500 0.3615 0.4675
0.669 71.43 6000 0.3797 0.4601
0.6457 77.38 6500 0.3812 0.4515
0.6098 83.33 7000 0.3660 0.4343
0.5874 89.29 7500 0.3640 0.4257
0.5627 95.24 8000 0.3661 0.4239

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
3
Hosted inference API
or or
This model can be loaded on the Inference API on-demand.

Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-georgian

Evaluation results