Data_extraction / README.md
indudesane's picture
End of training
7cf8a28 verified
|
raw
history blame
3.97 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: Data_extraction
    results: []

Data_extraction

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Ign: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ign Overall Precision Overall Recall Overall F1 Overall Accuracy
0.032 18.1818 200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 36.3636 400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 54.5455 600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 72.7273 800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 90.9091 1000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 109.0909 1200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 127.2727 1400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 145.4545 1600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 163.6364 1800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 181.8182 2000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 200.0 2200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0
0.0 218.1818 2400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1