|
--- |
|
license: mit |
|
base_model: SCUT-DLVCLab/lilt-roberta-en-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Data_extraction |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Data_extraction |
|
|
|
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Ign: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} |
|
- Overall Precision: 1.0 |
|
- Overall Recall: 1.0 |
|
- Overall F1: 1.0 |
|
- Overall Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Ign | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:--------:|:----:|:---------------:|:------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.032 | 18.1818 | 200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 36.3636 | 400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 54.5455 | 600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 72.7273 | 800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 90.9091 | 1000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 109.0909 | 1200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 127.2727 | 1400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 145.4545 | 1600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 163.6364 | 1800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 181.8182 | 2000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 200.0 | 2200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 218.1818 | 2400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 6933} | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|