segformer-b0-finetuned-agriculture
This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3305
- Mean Iou: 0.4242
- Mean Accuracy: 0.5107
- Overall Accuracy: 0.6733
- Accuracy Unlabeled: nan
- Accuracy Nutrient Deficiency: 0.6872
- Accuracy Planter Skip: 0.1915
- Accuracy Water: 0.8549
- Accuracy Waterway: 0.1797
- Accuracy Weed Cluster: 0.6404
- Iou Unlabeled: 0.0
- Iou Nutrient Deficiency: 0.6865
- Iou Planter Skip: 0.1914
- Iou Water: 0.8475
- Iou Waterway: 0.1795
- Iou Weed Cluster: 0.6401
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Nutrient Deficiency | Accuracy Planter Skip | Accuracy Water | Accuracy Waterway | Accuracy Weed Cluster | Iou Unlabeled | Iou Nutrient Deficiency | Iou Planter Skip | Iou Water | Iou Waterway | Iou Weed Cluster |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2889 | 1.0 | 8145 | 0.4127 | 0.2578 | 0.3110 | 0.4484 | nan | 0.3062 | 0.0 | 0.7988 | 0.0007 | 0.4496 | 0.0 | 0.3062 | 0.0 | 0.7913 | 0.0007 | 0.4485 |
0.3157 | 2.0 | 16290 | 0.3877 | 0.3374 | 0.4070 | 0.5970 | nan | 0.5241 | 0.0023 | 0.8816 | 0.0303 | 0.5969 | 0.0 | 0.5237 | 0.0023 | 0.8715 | 0.0301 | 0.5968 |
0.2637 | 3.0 | 24435 | 0.3531 | 0.3717 | 0.4480 | 0.6171 | nan | 0.5638 | 0.0409 | 0.8804 | 0.1563 | 0.5984 | 0.0 | 0.5633 | 0.0409 | 0.8723 | 0.1554 | 0.5982 |
0.4715 | 4.0 | 32580 | 0.3337 | 0.3653 | 0.4398 | 0.6073 | nan | 0.6172 | 0.1068 | 0.8077 | 0.0976 | 0.5698 | 0.0 | 0.6164 | 0.1068 | 0.8015 | 0.0976 | 0.5696 |
0.0668 | 5.0 | 40725 | 0.3305 | 0.4242 | 0.5107 | 0.6733 | nan | 0.6872 | 0.1915 | 0.8549 | 0.1797 | 0.6404 | 0.0 | 0.6865 | 0.1914 | 0.8475 | 0.1795 | 0.6401 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for imessam/segformer-b0-finetuned-agriculture
Base model
nvidia/mit-b0