Edit model card

results_2

This model is a fine-tuned version of distilbert/distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3742
  • Accuracy: 0.4708
  • Precision: 0.4847
  • Recall: 0.4708
  • F1: 0.4734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 24

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1286 1.0 120 1.1322 0.3458 0.5471 0.3458 0.2569
1.007 2.0 240 1.1356 0.4625 0.4700 0.4625 0.4234
0.8347 3.0 360 1.2379 0.4292 0.4550 0.4292 0.3851
0.7291 4.0 480 1.4182 0.4583 0.4778 0.4583 0.4575
0.3339 5.0 600 1.9020 0.4792 0.4986 0.4792 0.4631
0.1862 6.0 720 2.3742 0.4708 0.4847 0.4708 0.4734
0.2639 7.0 840 2.9896 0.4542 0.4583 0.4542 0.4519
0.0691 8.0 960 3.6229 0.4583 0.4918 0.4583 0.4515
0.2158 9.0 1080 3.7731 0.4625 0.4741 0.4625 0.4595
0.1475 10.0 1200 4.1775 0.4667 0.4678 0.4667 0.4540
0.1593 11.0 1320 4.1295 0.45 0.4612 0.45 0.4453
0.0018 12.0 1440 4.2133 0.4417 0.4434 0.4417 0.4389
0.0006 13.0 1560 4.4056 0.4583 0.4736 0.4583 0.4567
0.0025 14.0 1680 4.6331 0.4667 0.4780 0.4667 0.4591
0.0001 15.0 1800 4.6897 0.4583 0.4582 0.4583 0.4530
0.0001 16.0 1920 4.6231 0.45 0.4549 0.45 0.4513
0.0003 17.0 2040 4.6506 0.4708 0.4706 0.4708 0.4695
0.0001 18.0 2160 4.6900 0.4708 0.4692 0.4708 0.4691
0.0001 19.0 2280 4.7095 0.4708 0.4695 0.4708 0.4657
0.0047 20.0 2400 4.7870 0.4625 0.4649 0.4625 0.4590
0.0001 21.0 2520 4.8568 0.4708 0.4697 0.4708 0.4687
0.0001 22.0 2640 4.9106 0.4708 0.4748 0.4708 0.4675
0.0001 23.0 2760 4.8998 0.4667 0.4699 0.4667 0.4627
0.0001 24.0 2880 4.9071 0.4708 0.4742 0.4708 0.4671

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
82.1M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for ikura31/results_2

Finetuned
(527)
this model