results_2
This model is a fine-tuned version of distilbert/distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3742
- Accuracy: 0.4708
- Precision: 0.4847
- Recall: 0.4708
- F1: 0.4734
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 24
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.1286 | 1.0 | 120 | 1.1322 | 0.3458 | 0.5471 | 0.3458 | 0.2569 |
1.007 | 2.0 | 240 | 1.1356 | 0.4625 | 0.4700 | 0.4625 | 0.4234 |
0.8347 | 3.0 | 360 | 1.2379 | 0.4292 | 0.4550 | 0.4292 | 0.3851 |
0.7291 | 4.0 | 480 | 1.4182 | 0.4583 | 0.4778 | 0.4583 | 0.4575 |
0.3339 | 5.0 | 600 | 1.9020 | 0.4792 | 0.4986 | 0.4792 | 0.4631 |
0.1862 | 6.0 | 720 | 2.3742 | 0.4708 | 0.4847 | 0.4708 | 0.4734 |
0.2639 | 7.0 | 840 | 2.9896 | 0.4542 | 0.4583 | 0.4542 | 0.4519 |
0.0691 | 8.0 | 960 | 3.6229 | 0.4583 | 0.4918 | 0.4583 | 0.4515 |
0.2158 | 9.0 | 1080 | 3.7731 | 0.4625 | 0.4741 | 0.4625 | 0.4595 |
0.1475 | 10.0 | 1200 | 4.1775 | 0.4667 | 0.4678 | 0.4667 | 0.4540 |
0.1593 | 11.0 | 1320 | 4.1295 | 0.45 | 0.4612 | 0.45 | 0.4453 |
0.0018 | 12.0 | 1440 | 4.2133 | 0.4417 | 0.4434 | 0.4417 | 0.4389 |
0.0006 | 13.0 | 1560 | 4.4056 | 0.4583 | 0.4736 | 0.4583 | 0.4567 |
0.0025 | 14.0 | 1680 | 4.6331 | 0.4667 | 0.4780 | 0.4667 | 0.4591 |
0.0001 | 15.0 | 1800 | 4.6897 | 0.4583 | 0.4582 | 0.4583 | 0.4530 |
0.0001 | 16.0 | 1920 | 4.6231 | 0.45 | 0.4549 | 0.45 | 0.4513 |
0.0003 | 17.0 | 2040 | 4.6506 | 0.4708 | 0.4706 | 0.4708 | 0.4695 |
0.0001 | 18.0 | 2160 | 4.6900 | 0.4708 | 0.4692 | 0.4708 | 0.4691 |
0.0001 | 19.0 | 2280 | 4.7095 | 0.4708 | 0.4695 | 0.4708 | 0.4657 |
0.0047 | 20.0 | 2400 | 4.7870 | 0.4625 | 0.4649 | 0.4625 | 0.4590 |
0.0001 | 21.0 | 2520 | 4.8568 | 0.4708 | 0.4697 | 0.4708 | 0.4687 |
0.0001 | 22.0 | 2640 | 4.9106 | 0.4708 | 0.4748 | 0.4708 | 0.4675 |
0.0001 | 23.0 | 2760 | 4.8998 | 0.4667 | 0.4699 | 0.4667 | 0.4627 |
0.0001 | 24.0 | 2880 | 4.9071 | 0.4708 | 0.4742 | 0.4708 | 0.4671 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for ikura31/results_2
Base model
distilbert/distilroberta-base