Basic Inference
from transformers import T5TokenizerFast, T5ForConditionalGeneration
tokenizer = T5TokenizerFast.from_pretrained('ij5/whitespace-correction')
model = T5ForConditionalGeneration.from_pretrained('ij5/whitespace-correction')
def fix_whitespace(text):
inputs = f"λμ΄μ°κΈ° κ΅μ : {text}"
tokenized = tokenizer(inputs, max_length=128, truncation=True, return_tensors='pt').to('cuda')
output_ids = model.generate(
input_ids=tokenized['input_ids'],
attention_mask=tokenized['attention_mask'],
max_length=128,
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(fix_whitespace("νλ€ λ¦¬λ κ°μ§ μ¬μ΄λ‘ λΆμ₯ λ°λμ νμ μ΄ λ λ¬λκΈ°λΌλ ν κ²μ²λΌ."))
# result: νλ€λ¦¬λ κ°μ§ μ¬μ΄λ‘ λΆμ₯ λ°λμ νμμ΄ λλ¬λκΈ°λΌλ ν κ²μ²λΌ.
correction
This model is a fine-tuned version of paust/pko-t5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0160
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0243 | 1.0 | 1688 | 0.0183 |
0.0172 | 2.0 | 3376 | 0.0165 |
0.0126 | 3.0 | 5064 | 0.0160 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for ij5/whitespace-correction
Base model
paust/pko-t5-base