Whisper Pre Tuned 300 Audios - Nacho v3.0
This model is a fine-tuned version of rasel35/whisper-base-es-medical-terms on the 300 audios 1.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3444
- Wer: 16.1793
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.8732 | 1.0 | 18 | 1.1907 | 60.6238 |
0.676 | 2.0 | 36 | 0.4489 | 21.0526 |
0.2633 | 3.0 | 54 | 0.4061 | 17.9337 |
0.132 | 4.0 | 72 | 0.3804 | 17.9337 |
0.0802 | 5.0 | 90 | 0.3507 | 41.7154 |
0.0498 | 6.0 | 108 | 0.3660 | 18.5185 |
0.036 | 7.0 | 126 | 0.3614 | 17.3489 |
0.0213 | 8.0 | 144 | 0.3329 | 15.9844 |
0.0152 | 9.0 | 162 | 0.3453 | 15.7895 |
0.0042 | 9.4507 | 170 | 0.3444 | 16.1793 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for igarciahuidobro/whisper-tiny-300-audios-v3
Base model
openai/whisper-base
Finetuned
rasel35/whisper-base-es-medical-terms