File size: 2,067 Bytes
4fa18b7
 
 
 
 
ea65057
4fa18b7
 
ba94793
 
 
4fa18b7
 
8125718
4fa18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
c6423fa
 
947bf74
c6423fa
21e0c4a
 
947bf74
c6423fa
4fa18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
tags:
- merge
- mergekit
- lazymergekit
license: apache-2.0
---


<img src="https://cdn-uploads.huggingface.co/production/uploads/6389d3c61e8755d777902366/-_AiKUEsY3x-N7oY52fdE.jpeg" style="border-radius:2%; width: 66%">

# pandafish-7b

pandafish-7b is an instruct model based on a [Model Stock](https://arxiv.org/abs/2403.19522) merge of the following models (via [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)):

## 🧩 Configuration

```yaml
models:
  - model: mistralai/Mistral-7B-v0.1
  - model: mistralai/Mistral-7B-Instruct-v0.2
  - model: CultriX/NeuralTrix-bf16
  - model: OpenPipe/mistral-ft-optimized-1227
merge_method: model_stock
base_model: mistralai/Mistral-7B-v0.1
dtype: bfloat16
```

## πŸ† Evals

|                             Model                             |Average|AGIEval|GPT4All|TruthfulQA|Bigbench|
|---------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[pandafish-7b](https://huggingface.co/ichigoberry/pandafish-7b) [πŸ“„](https://gist.github.com/tosh/dda6a21e568d17a410ca618265f64a28)| 51.99 | **40** | **74.23** | 53.22 | 40.51 |
|[mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) [πŸ“„](https://gist.github.com/mlabonne/05d358e17dffdf9eee7c2322380c9da6) | 54.81 | 38.5 | 71.64 | **66.82** | **42.29** |


## πŸ’» Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ichigoberry/pandafish-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```