layoutlm-funsd
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.6897
- Answer: {'precision': 0.7033707865168539, 'recall': 0.7737948084054388, 'f1': 0.736904061212478, 'number': 809}
- Header: {'precision': 0.3697478991596639, 'recall': 0.3697478991596639, 'f1': 0.3697478991596639, 'number': 119}
- Question: {'precision': 0.7738825591586328, 'recall': 0.8291079812206573, 'f1': 0.800543970988214, 'number': 1065}
- Overall Precision: 0.7223
- Overall Recall: 0.7792
- Overall F1: 0.7497
- Overall Accuracy: 0.8012
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.8092 | 1.0 | 10 | 1.6181 | {'precision': 0.013850415512465374, 'recall': 0.006180469715698393, 'f1': 0.008547008547008546, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.26586102719033233, 'recall': 0.08262910798122065, 'f1': 0.12607449856733524, 'number': 1065} | 0.1344 | 0.0467 | 0.0693 | 0.3144 |
1.4937 | 2.0 | 20 | 1.2877 | {'precision': 0.1342925659472422, 'recall': 0.138442521631644, 'f1': 0.1363359707851491, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.34902488231338263, 'recall': 0.48732394366197185, 'f1': 0.4067398119122257, 'number': 1065} | 0.2719 | 0.3166 | 0.2925 | 0.5718 |
1.1349 | 3.0 | 30 | 0.9891 | {'precision': 0.45396825396825397, 'recall': 0.5302843016069221, 'f1': 0.48916761687571264, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5338582677165354, 'recall': 0.6366197183098592, 'f1': 0.5807280513918629, 'number': 1065} | 0.4998 | 0.5554 | 0.5261 | 0.6801 |
0.8493 | 4.0 | 40 | 0.8234 | {'precision': 0.580259222333001, 'recall': 0.7194066749072929, 'f1': 0.6423841059602649, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6639928698752228, 'recall': 0.6995305164319249, 'f1': 0.6812985825331503, 'number': 1065} | 0.6189 | 0.6658 | 0.6415 | 0.7323 |
0.6989 | 5.0 | 50 | 0.7466 | {'precision': 0.6263048016701461, 'recall': 0.7416563658838071, 'f1': 0.6791171477079797, 'number': 809} | {'precision': 0.11688311688311688, 'recall': 0.07563025210084033, 'f1': 0.09183673469387756, 'number': 119} | {'precision': 0.7050043898156277, 'recall': 0.7539906103286385, 'f1': 0.7286751361161524, 'number': 1065} | 0.6495 | 0.7085 | 0.6777 | 0.7609 |
0.5795 | 6.0 | 60 | 0.6809 | {'precision': 0.6511387163561076, 'recall': 0.7775030902348579, 'f1': 0.7087323943661973, 'number': 809} | {'precision': 0.13095238095238096, 'recall': 0.09243697478991597, 'f1': 0.10837438423645321, 'number': 119} | {'precision': 0.705229793977813, 'recall': 0.8356807511737089, 'f1': 0.7649333906317147, 'number': 1065} | 0.6618 | 0.7677 | 0.7108 | 0.7872 |
0.508 | 7.0 | 70 | 0.6786 | {'precision': 0.667375132837407, 'recall': 0.7762669962917181, 'f1': 0.7177142857142856, 'number': 809} | {'precision': 0.1875, 'recall': 0.17647058823529413, 'f1': 0.1818181818181818, 'number': 119} | {'precision': 0.7431972789115646, 'recall': 0.8206572769953052, 'f1': 0.7800089245872378, 'number': 1065} | 0.6833 | 0.7642 | 0.7215 | 0.7871 |
0.4558 | 8.0 | 80 | 0.6540 | {'precision': 0.6932314410480349, 'recall': 0.7849196538936959, 'f1': 0.736231884057971, 'number': 809} | {'precision': 0.24, 'recall': 0.20168067226890757, 'f1': 0.2191780821917808, 'number': 119} | {'precision': 0.7464195450716091, 'recall': 0.831924882629108, 'f1': 0.7868561278863234, 'number': 1065} | 0.7013 | 0.7752 | 0.7364 | 0.7997 |
0.3978 | 9.0 | 90 | 0.6650 | {'precision': 0.6969026548672567, 'recall': 0.7787391841779975, 'f1': 0.7355516637478109, 'number': 809} | {'precision': 0.2644628099173554, 'recall': 0.2689075630252101, 'f1': 0.2666666666666667, 'number': 119} | {'precision': 0.7474662162162162, 'recall': 0.8309859154929577, 'f1': 0.7870164517563362, 'number': 1065} | 0.7003 | 0.7762 | 0.7363 | 0.7951 |
0.3612 | 10.0 | 100 | 0.6679 | {'precision': 0.7168742921857305, 'recall': 0.7824474660074165, 'f1': 0.7482269503546098, 'number': 809} | {'precision': 0.30701754385964913, 'recall': 0.29411764705882354, 'f1': 0.30042918454935624, 'number': 119} | {'precision': 0.7629757785467128, 'recall': 0.828169014084507, 'f1': 0.7942368302566412, 'number': 1065} | 0.7199 | 0.7777 | 0.7477 | 0.8026 |
0.3168 | 11.0 | 110 | 0.6831 | {'precision': 0.6914778856526429, 'recall': 0.792336217552534, 'f1': 0.7384792626728109, 'number': 809} | {'precision': 0.3238095238095238, 'recall': 0.2857142857142857, 'f1': 0.30357142857142855, 'number': 119} | {'precision': 0.7770979020979021, 'recall': 0.8347417840375587, 'f1': 0.8048890900860118, 'number': 1065} | 0.7188 | 0.7847 | 0.7503 | 0.7978 |
0.3054 | 12.0 | 120 | 0.6884 | {'precision': 0.6985539488320356, 'recall': 0.7762669962917181, 'f1': 0.7353629976580796, 'number': 809} | {'precision': 0.3559322033898305, 'recall': 0.35294117647058826, 'f1': 0.35443037974683544, 'number': 119} | {'precision': 0.7755102040816326, 'recall': 0.8206572769953052, 'f1': 0.7974452554744526, 'number': 1065} | 0.7201 | 0.7747 | 0.7464 | 0.7985 |
0.2913 | 13.0 | 130 | 0.6794 | {'precision': 0.7107344632768362, 'recall': 0.7775030902348579, 'f1': 0.7426210153482882, 'number': 809} | {'precision': 0.36134453781512604, 'recall': 0.36134453781512604, 'f1': 0.36134453781512604, 'number': 119} | {'precision': 0.7737478411053541, 'recall': 0.8413145539906103, 'f1': 0.8061178587494376, 'number': 1065} | 0.7253 | 0.7868 | 0.7548 | 0.8039 |
0.2775 | 14.0 | 140 | 0.6870 | {'precision': 0.7040358744394619, 'recall': 0.7762669962917181, 'f1': 0.7383891828336272, 'number': 809} | {'precision': 0.3728813559322034, 'recall': 0.3697478991596639, 'f1': 0.37130801687763715, 'number': 119} | {'precision': 0.7757255936675461, 'recall': 0.828169014084507, 'f1': 0.8010899182561309, 'number': 1065} | 0.7238 | 0.7797 | 0.7507 | 0.8014 |
0.2706 | 15.0 | 150 | 0.6897 | {'precision': 0.7033707865168539, 'recall': 0.7737948084054388, 'f1': 0.736904061212478, 'number': 809} | {'precision': 0.3697478991596639, 'recall': 0.3697478991596639, 'f1': 0.3697478991596639, 'number': 119} | {'precision': 0.7738825591586328, 'recall': 0.8291079812206573, 'f1': 0.800543970988214, 'number': 1065} | 0.7223 | 0.7792 | 0.7497 | 0.8012 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 77
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.