File size: 18,399 Bytes
02e480f
 
 
 
da2208c
02e480f
 
da2208c
02e480f
 
 
 
da2208c
 
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2208c
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2208c
 
 
 
 
 
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2208c
 
 
 
 
 
 
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2208c
 
 
 
 
 
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2208c
 
 
 
 
 
 
 
 
 
 
 
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Deep learning
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from fast_transformers.masking import LengthMask

# Standard library
from tqdm import tqdm
import pandas as pd
import numpy as np
import random
import os


class Trainer:
    
    def __init__(
        self,
        model: torch.nn.Module,
        train_data: DataLoader,
        optimizer: torch.optim.Optimizer,
        save_every: int,
        save_checkpoint_path: str,
        load_checkpoint_path: str,
        config,
    ) -> None:
        self.local_rank = int(os.environ["LOCAL_RANK"])
        self.global_rank = int(os.environ["RANK"])
        self.model = model.to(self.local_rank)
        self.train_data = train_data
        self.optimizer = optimizer
        self.save_every = save_every
        self.epochs_run = 0
        self.last_batch_idx = -1
        self.save_checkpoint_path = save_checkpoint_path
        self.config = config

        if os.path.exists(load_checkpoint_path):
            print(f"Loading checkpoint at {load_checkpoint_path}...")
            self._load_checkpoint(load_checkpoint_path)

        self.model = DDP(self.model, device_ids=[self.local_rank])

    def _load_checkpoint(self, checkpoint_path):
        opt_dict = None
        loc = f"cuda:{self.local_rank}"
        ckpt_dict = torch.load(checkpoint_path, map_location=loc)
        if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')):
            opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc)

        self.model.load_state_dict(ckpt_dict["MODEL_STATE"])
        if opt_dict is not None:
            self.optimizer.load_state_dict(opt_dict["OPTIMIZER_STATE"])
            print('Optimizer states restored!')

        self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1
        self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"]

        # load RNG states each time the model and states are loaded from checkpoint
        if 'rng' in ckpt_dict:
            rng = ckpt_dict['rng']
            for key, value in rng.items():
                if key =='torch_state':
                    torch.set_rng_state(value.cpu())
                elif key =='cuda_state':
                    torch.cuda.set_rng_state(value.cpu())
                elif key =='numpy_state':
                    np.random.set_state(value)
                elif key =='python_state':
                    random.setstate(value)
                else:
                    print('unrecognized state')

        print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.")

    def _save_checkpoint(self, epoch, config, last_idx):
        # save RNG states each time the model and states are saved
        out_dict = dict()
        out_dict['torch_state'] = torch.get_rng_state()
        out_dict['cuda_state'] = torch.cuda.get_rng_state()
        if np:
            out_dict['numpy_state'] = np.random.get_state()
        if random:
            out_dict['python_state'] = random.getstate()

        # model states
        ckpt_dict = {
            "MODEL_STATE": self.model.module.state_dict(),
            "EPOCHS_RUN": epoch,
            "hparams": vars(config),
            "last_batch_idx": last_idx,
            "rng": out_dict
        }

        # optimizer states
        opt_dict = {
            "OPTIMIZER_STATE": self.optimizer.state_dict(),
        }

        if last_idx == -1:
            filename = f'{str(self.model.module)}_{epoch}.pt'
        else:
            filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt'

        torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename))
        torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'))

        print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.")

    def train(self, max_epochs: int):
        for epoch in range(self.epochs_run, max_epochs):
            self._run_epoch(epoch)
            if self.local_rank == 0:
                self._save_checkpoint(epoch, self.config, last_idx=-1)

    def _run_epoch(self, epoch):
        print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)} | Last batch: {self.last_batch_idx}")
        self.train_data.sampler.set_epoch(epoch)
        loss_list = pd.Series()

        for idx, data in enumerate(tqdm(self.train_data)):
            # skip batches
            if idx <= self.last_batch_idx:
                continue

            # run batch
            bucket_idx_masked       = data[0]
            bucket_targets          = data[1]
            bucket_idx_not_masked   = data[2]
            loss = self._run_batch(bucket_idx_masked, bucket_targets, bucket_idx_not_masked)
            torch.cuda.empty_cache()

            # track loss
            if self.local_rank == 0:
                loss_list = pd.concat([loss_list, pd.Series([loss])], axis=0)

            # checkpoint
            if self.local_rank == 0 and idx % self.save_every == 0 and idx != 0:
                self._save_checkpoint(epoch, self.config, idx)
                # WARN: due to job limit time - save loss for each iter
                loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_{idx}_epoch{epoch}.csv'), index=False)
                loss_list = pd.Series()

        self.last_batch_idx = -1
        
        if self.local_rank == 0:
            loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False)

    def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked):
        raise NotImplementedError


class TrainerEncoderDecoder(Trainer):
    
    def __init__(
        self,
        model: torch.nn.Module,
        train_data: DataLoader,
        optimizer: torch.optim.Optimizer,
        save_every: int,
        save_checkpoint_path: str,
        load_checkpoint_path: str,
        config,
    ) -> None:
        super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config)
        self.criterionC = nn.CrossEntropyLoss(ignore_index=-100)
        self.criterionR = nn.MSELoss()

        self.optimE = self.optimizer[0]
        self.optimD = self.optimizer[1]

        self.ngpus_per_node = torch.cuda.device_count()
        self.total_batches = len(self.train_data)
        self.batch_thresh = int(self.total_batches - (self.total_batches * 0.05 * self.ngpus_per_node))
        print('batch_thresh:', self.batch_thresh)

    def _load_checkpoint(self, checkpoint_path):
        opt_dict = None
        loc = f"cuda:{self.local_rank}"
        ckpt_dict = torch.load(checkpoint_path, map_location=loc)
        if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')):
            opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc)

        self.model.load_state_dict(ckpt_dict["MODEL_STATE"])
        if opt_dict is not None:
            self.optimizer[0].load_state_dict(opt_dict["OPTIMIZER_STATE_ENCODER"])
            self.optimizer[1].load_state_dict(opt_dict["OPTIMIZER_STATE_DECODER"])
            print('Optimizer states restored!')

        self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1
        self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"]

        # load RNG states each time the model and states are loaded from checkpoint
        if 'rng' in ckpt_dict:
            rng = ckpt_dict['rng']
            for key, value in rng.items():
                if key =='torch_state':
                    torch.set_rng_state(value.cpu())
                elif key =='cuda_state':
                    torch.cuda.set_rng_state(value.cpu())
                elif key =='numpy_state':
                    np.random.set_state(value)
                elif key =='python_state':
                    random.setstate(value)
                else:
                    print('unrecognized state')

        print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.")
    
    def _save_checkpoint(self, epoch, config, last_idx):
        # save RNG states each time the model and states are saved
        out_dict = dict()
        out_dict['torch_state'] = torch.get_rng_state()
        out_dict['cuda_state'] = torch.cuda.get_rng_state()
        if np:
            out_dict['numpy_state'] = np.random.get_state()
        if random:
            out_dict['python_state'] = random.getstate()
        
        # model states
        ckpt_dict = {
            "MODEL_STATE": self.model.module.state_dict(),
            "EPOCHS_RUN": epoch,
            "hparams": vars(config),
            "last_batch_idx": last_idx,
            "rng": out_dict
        }

        # optimizer states
        opt_dict = {
            "OPTIMIZER_STATE_ENCODER": self.optimizer[0].state_dict(),
            "OPTIMIZER_STATE_DECODER": self.optimizer[1].state_dict(),
        }

        if last_idx == -1:
            filename = f'{str(self.model.module)}_{epoch}.pt'
        else:
            filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt'

        torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename))
        torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'))

        print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.")

    def _run_epoch(self, epoch):
        print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)}")
        self.train_data.sampler.set_epoch(epoch)
        loss_list = pd.DataFrame()

        for idx, data in enumerate(tqdm(self.train_data)):
            bucket_idx_masked       = data[0]
            bucket_targets          = data[1]
            bucket_idx_not_masked   = data[2]
            lossE, lossD = self._run_batch(idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked)
            torch.cuda.empty_cache()

            if self.local_rank == 0:
                df = pd.DataFrame({
                    'lossE': [lossE.cpu().item()],
                    'lossD': [lossD.cpu().item()],
                })
                loss_list = pd.concat([loss_list, df], axis=0)
        
        if self.local_rank == 0:
            loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False)

    def custom(self, module):
        def custom_forward(*inputs):
            inputs = module(inputs[0])
            return inputs
        return custom_forward

    def _run_batch(self, batch_idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked):
        self.optimE.zero_grad(set_to_none=True)
        self.optimD.zero_grad(set_to_none=True)

        can_train_encoder = (batch_idx + 1) <= self.batch_thresh
        can_train_decoder = (batch_idx + 1) > self.batch_thresh

        padding_idx = 2
        errorE = torch.zeros(1).to(self.local_rank)
        errorD = torch.zeros(1).to(self.local_rank)
        errorE_tmp = .0
        errorD_tmp = .0

        for chunk in range(len(bucket_idx_masked)):
            idx_masked = bucket_idx_masked[chunk].to(self.local_rank)
            targets = bucket_targets[chunk].to(self.local_rank)
            idx_not_masked = bucket_idx_not_masked[chunk]
            idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked))
            idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank)
            mask = (idx_masked != padding_idx)

            ###########
            # Encoder #
            ###########
            if can_train_encoder:
                for param in self.model.module.encoder.parameters():
                    param.requires_grad = True
                for param in self.model.module.decoder.parameters():
                    param.requires_grad = False

                # encoder forward
                x = self.model.module.encoder.tok_emb(idx_masked)
                x = self.model.module.encoder.drop(x)
                x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x)
                logits = self.model.module.encoder.lang_model(x)

                # loss function
                logits = logits.view(-1, logits.size(-1))
                targets = targets.view(-1)
                errorE_tmp = self.criterionC(logits, targets) / len(bucket_idx_masked)

                if chunk < len(bucket_idx_masked)-1:
                    errorE_tmp.backward()
                    errorE += errorE_tmp.detach()
                else:
                    errorE += errorE_tmp
                

            ###########
            # Decoder #
            ###########
            if can_train_decoder:
                for param in self.model.module.encoder.parameters():
                    param.requires_grad = False
                for param in self.model.module.decoder.parameters():
                    param.requires_grad = True
                    
                self.model.module.encoder.eval()

                # encoder forward
                with torch.no_grad():
                    true_set, true_cte = self.model.module.encoder(idx_masked, mask=mask, inference=True)

                # add padding
                input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float()
                mask_embeddings = (true_cte * input_mask_expanded)
                true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0)
                true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd)

                # decoder forward
                pred_set, pred_ids = self.model.module.decoder(true_cte)

                # losses
                pred_ids = pred_ids.view(-1, pred_ids.size(-1))
                true_ids = idx_not_masked.view(-1)

                error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked)
                error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked)
                errorD_tmp = error_ids + error_set

                if chunk < len(bucket_idx_masked)-1:
                    errorD_tmp.backward()
                    errorD += errorD_tmp.detach()
                else:
                    errorD += errorD_tmp

        if can_train_decoder:
            errorD.backward()
            self.optimD.step()
        elif can_train_encoder:
            errorE.backward()
            self.optimE.step()

        if self.local_rank == 0:
            print(f'LossE: {errorE.item()} | LossD: {errorD.item()}')
        return errorE, errorD
    

class TrainerDirectDecoder(Trainer):
    
    def __init__(
        self,
        model: torch.nn.Module,
        train_data: DataLoader,
        optimizer: torch.optim.Optimizer,
        save_every: int,
        save_checkpoint_path: str,
        load_checkpoint_path: str,
        config,
    ) -> None:
        super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config)
        self.criterionC = nn.CrossEntropyLoss(ignore_index=-100)
        self.criterionR = nn.MSELoss()

    def custom(self, module):
        def custom_forward(*inputs):
            inputs = module(inputs[0], length_mask=inputs[1])
            return inputs
        return custom_forward

    def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked):
        padding_idx = 2
        error = torch.zeros(1).to(self.local_rank)
        error_tmp = .0
        self.optimizer.zero_grad(set_to_none=True)

        for chunk in range(len(bucket_idx_masked)):
            idx_masked = bucket_idx_masked[chunk].to(self.local_rank)
            targets = bucket_targets[chunk].to(self.local_rank)
            idx_not_masked = bucket_idx_not_masked[chunk]
            idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked))
            idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank)
            mask = (idx_masked != padding_idx)

            # encoder forward
            x = self.model.module.encoder.tok_emb(idx_masked)
            x = self.model.module.encoder.drop(x)
            x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x, LengthMask(mask.sum(-1), max_len=idx_masked.shape[1]))

            # mean pooling
            input_masked_expanded = mask.unsqueeze(-1).expand(x.size()).float()
            sum_embeddings = torch.sum(x*input_masked_expanded, 1)
            sum_mask = torch.clamp(input_masked_expanded.sum(1), min=1e-9)
            true_set = sum_embeddings/sum_mask
            true_cte = x
            del x
            torch.cuda.empty_cache()

            # add padding
            input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float()
            mask_embeddings = (true_cte * input_mask_expanded)
            true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0)
            true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd)

            # decoder forward
            pred_set, pred_ids = self.model.module.decoder(true_cte)

            # losses
            pred_ids = pred_ids.view(-1, pred_ids.size(-1))
            true_ids = idx_not_masked.view(-1)

            error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked)
            error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked)
            error_tmp = error_ids + error_set

            if chunk < len(bucket_idx_masked)-1:
                error_tmp.backward()
                error += error_tmp.detach()
            else:
                error += error_tmp

            torch.cuda.empty_cache()

        error.backward()
        self.optimizer.step()

        if self.local_rank == 0:
            print(f'Loss: {error.item()}')
        return error.item()