File size: 6,685 Bytes
996303b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c597257
996303b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
from mmcv import Config
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,wrap_fp16_model)
from mmseg.models import build_segmentor

import matplotlib.pyplot as plt
import mmcv
import torch
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint

from mmseg.datasets.pipelines import Compose
from mmseg.models import build_segmentor

from mmseg.datasets import build_dataloader, build_dataset, load_flood_test_data
import rasterio
import torch
import torch.nn.functional as F

from torchvision import transforms
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel

from mmseg.apis import multi_gpu_test, single_gpu_test, init_segmentor
from . import custom # custom preprocessing for hls
import pdb

import numpy as np
import glob
import os

import time

def parse_args():

    parser = argparse.ArgumentParser(description="Inference on burn scar fine-tuned model")
    parser.add_argument('-config', help='path to model configuration file')
    parser.add_argument('-ckpt', help='path to model checkpoint')
    parser.add_argument('-input', help='path to input images folder for inference')
    parser.add_argument('-output', help='directory path to save output images')
    parser.add_argument('-input_type', help='file type of input images',default="tif")

    args = parser.parse_args()

    return args

def open_tiff(fname):

    with rasterio.open(fname, "r") as src:

        data = src.read()

    return data

def write_tiff(img_wrt, filename, metadata):

    """
    It writes a raster image to file.

    :param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
    :param filename: file path to the output file
    :param metadata: metadata to use to write the raster to disk
    :return:
    """

    with rasterio.open(filename, "w", **metadata) as dest:

        if len(img_wrt.shape) == 2:

            img_wrt = img_wrt[None]

        for i in range(img_wrt.shape[0]):
            dest.write(img_wrt[i, :, :], i + 1)


def get_meta(fname):

    with rasterio.open(fname, "r") as src:

        meta = src.meta

    return meta

def preprocess_image(data, means, stds, nodata=-9999):

    data=np.where(data == nodata, 0, data)
    data = data.astype(np.float32)

    if len(data)==2:
        (x, y) = data
    else:
        x=data
        y=np.full((x.shape[-2], x.shape[-1]), -1)

    im, label = x.copy(), y.copy()
    label = label.astype(np.float64)

    im1 = im[0]  # red
    im2 = im[1]  # green
    im3 = im[2]  # blue
    im4 = im[3]  # NIR narrow
    im5 = im[4]  # swir 1
    im6 = im[5]  # swir 2

    dim = x.shape[-1]
    label = label.squeeze()
    norm = transforms.Normalize(means, stds)
    ims = [torch.stack((transforms.ToTensor()(im1).squeeze(),
                        transforms.ToTensor()(im2).squeeze(),
                        transforms.ToTensor()(im3).squeeze(),
                        transforms.ToTensor()(im4).squeeze(),
                        transforms.ToTensor()(im5).squeeze(),
                        transforms.ToTensor()(im6).squeeze()))]
    ims = [norm(im) for im in ims]
    ims = torch.stack(ims)

    label = transforms.ToTensor()(label).squeeze()

    _img_metas = {
        'ori_shape': (dim, dim),
        'img_shape': (dim, dim),
        'pad_shape': (dim, dim),
        'scale_factor': [1., 1., 1., 1.],
        'flip': False, # needs flip direction specified
    }

    img_metas = [_img_metas] * 1
    return {"img": ims,
            "img_metas": img_metas,
            "gt_semantic_seg": label}


def load_model(config, ckpt):

    print('Loading configuration...')
    cfg = Config.fromfile(config)
    print('Building model...')
    model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
    print('Loading checkpoint...')
    checkpoint = load_checkpoint(model,ckpt, map_location='cpu')
    print('Evaluating model...')
    model = MMDataParallel(model, device_ids=[0])
    model.eval()

    return model


def inference_on_file(model, target_image, output_image, means, stds):

    try:
        st = time.time()
        data_orig = open_tiff(target_image)
        meta = get_meta(target_image)
        nodata = meta['nodata'] if meta['nodata'] is not None else -9999

        data = preprocess_image(data_orig, means, stds, nodata)

        small_fixed_size_arrs =  custom.split_and_pad(data['img'][:,:,None,:,:], (1, 6, 1, 224, 224))
        single_chip_batch = [torch.vstack([torch.tensor(t) for t in small_fixed_size_arrs])]
        print('Running inference...')
        with torch.no_grad():
            result = model(single_chip_batch, data['img_metas'], return_loss=False, rescale=False)
            print("Result: Unique Values: ",np.unique(result))

        print("Output has shape: " + str(result[0].shape))
        #### TO DO: Post process (e.g. morphological operations)

        result = custom.merge_and_unpad(result, (data_orig.shape[-2],data_orig.shape[-1]), (224, 224))

        print("Result: Unique Values: ",np.unique(result))

        ##### Save file to disk
        meta["count"] = 1
        meta["dtype"] = "int16"
        meta["compress"] = "lzw"
        meta["nodata"] = -1
        meta["nodata"] = nodata
        print('Saving output...')
        # pdb.set_trace()
        result = np.where(data_orig[0] == nodata, nodata, result)

        write_tiff(result, output_image, meta)
        et = time.time()
        print(f'Inference completed in {str(np.round(et - st, 1))} seconds. Output available at: ' + output_image)

    except:
        print(f'Error on image {target_image} \nContinue to next input')

def main():

    args = parse_args()

    model = load_model(args.config, args.ckpt)
    image_pattern = "*merged"
    target_images = glob.glob(os.path.join(args.input, image_pattern + "." + args.input_type))

    print('Identified images to predict on: ' + str(len(target_images)))

    if not os.path.isdir(args.output):
        os.mkdir(args.output)

    means, stds = custom.calculate_band_statistics(args.input, image_pattern, bands=[0, 1, 2, 3, 4, 5])

    for i, target_image in enumerate(target_images):

        print(f'Working on Image {i}')
        output_image = os.path.join(args.output,target_image.split("/")[-1].split(f"_{image_pattern[1:]}.")[0]+'_pred.'+args.input_type)

        inference_on_file(model, target_image, output_image, means, stds)

    print("Running metric eval")

    gt_dir = "/home/workdir/hls-foundation/data/burn_scars/validation"
    pred_dir = args.output
    avg_dice_score = custom.compute_metrics(gt_dir, pred_dir)
    print("Average Dice score:", avg_dice_score)


if __name__ == "__main__":
    main()