File size: 6,542 Bytes
91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 f2c0d71 c599a73 91b09fa c599a73 91b09fa c599a73 f2c0d71 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 91b09fa c599a73 fed16ce c599a73 91b09fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
custom_imports = dict(imports=['geospatial_fm'])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
cudnn_benchmark = True
dataset_type = 'GeospatialDataset'
# TO BE DEFINED BY USER: data directory
data_root = '<path to data root>'
num_frames = 1
img_size = 224
num_workers = 4
samples_per_gpu = 4
img_norm_cfg = dict(
means=[
0.033349706741586264, 0.05701185520536176, 0.05889748132001316,
0.2323245113436119, 0.1972854853760658, 0.11944914225186566
],
stds=[
0.02269135568823774, 0.026807560223070237, 0.04004109844362779,
0.07791732423672691, 0.08708738838140137, 0.07241979477437814
])
bands = [0, 1, 2, 3, 4, 5]
tile_size = 224
orig_nsize = 512
crop_size = (tile_size, tile_size)
img_suffix = '_merged.tif'
seg_map_suffix = '.mask.tif'
ignore_index = -1
image_nodata = -9999
image_nodata_replace = 0
image_to_float32 = True
# model
# TO BE DEFINED BY USER: model path
pretrained_weights_path = '<path to pretrained weights>'
num_layers = 12
patch_size = 16
embed_dim = 768
num_heads = 12
tubelet_size = 1
output_embed_dim = num_frames*embed_dim
max_intervals=10000
evaluation_interval=1000
# TO BE DEFINED BY USER: model path
experiment = '<experiment name>'
project_dir = '<project directory name>'
work_dir = os.path.join(project_dir, experiment)
save_path = work_dir
save_path = work_dir
train_pipeline = [
dict(type='LoadGeospatialImageFromFile', to_float32=image_to_float32),
dict(type='LoadGeospatialAnnotations', reduce_zero_label=False),
dict(type='BandsExtract', bands=bands),
dict(type='RandomFlip', prob=0.5),
dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
# to channels first
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)),
dict(type='TorchNormalize', **img_norm_cfg),
dict(type='TorchRandomCrop', crop_size=(tile_size, tile_size)),
dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, tile_size, tile_size)),
dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, tile_size, tile_size)),
dict(
type='CastTensor',
keys=['gt_semantic_seg'],
new_type='torch.LongTensor'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(type='LoadGeospatialImageFromFile', to_float32=image_to_float32),
dict(type='BandsExtract', bands=bands),
dict(type='ToTensor', keys=['img']),
# to channels first
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)),
dict(type='TorchNormalize', **img_norm_cfg),
dict(
type='Reshape',
keys=['img'],
new_shape=(len(bands), num_frames, -1, -1),
look_up=dict({
'2': 1,
'3': 2
})),
dict(type='CastTensor', keys=['img'], new_type='torch.FloatTensor'),
dict(
type='CollectTestList',
keys=['img'],
meta_keys=[
'img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename',
'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape',
'scale_factor', 'img_norm_cfg'
])
]
CLASSES = ('Unburnt land', 'Burn scar')
data = dict(
samples_per_gpu=samples_per_gpu,
workers_per_gpu=num_workers,
train=dict(
type=dataset_type,
CLASSES=CLASSES,
data_root=data_root,
img_dir='training',
ann_dir='training',
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
pipeline=train_pipeline,
ignore_index=-1),
val=dict(
type=dataset_type,
CLASSES=CLASSES,
data_root=data_root,
img_dir='validation',
ann_dir='validation',
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
pipeline=test_pipeline,
ignore_index=-1),
test=dict(
type=dataset_type,
CLASSES=CLASSES,
data_root=data_root,
img_dir='validation',
ann_dir='validation',
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
pipeline=test_pipeline,
ignore_index=-1))
optimizer = dict(type='Adam', lr=1.3e-05, betas=(0.9, 0.999))
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-06,
power=1.0,
min_lr=0.0,
by_epoch=False)
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardLoggerHook', by_epoch=False)
])
checkpoint_config = dict(
by_epoch=True,
interval=10,
out_dir=save_path
)
evaluation = dict(
interval=evaluation_interval,
metric='mIoU',
pre_eval=True,
save_best='mIoU',
by_epoch=False)
loss_func=dict(
type='DiceLoss', use_sigmoid=False, loss_weight=1,
ignore_index=-1)
runner = dict(type='IterBasedRunner', max_iters=max_intervals)
workflow = [('train', 1)]
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
type='TemporalEncoderDecoder',
frozen_backbone=False,
backbone=dict(
type='TemporalViTEncoder',
pretrained=pretrained_weights_path,
img_size=img_size,
patch_size=patch_size,
num_frames=num_frames,
tubelet_size=tubelet_size,
in_chans=len(bands),
embed_dim=embed_dim,
depth=12,
num_heads=num_heads,
mlp_ratio=4.0,
norm_pix_loss=False),
neck=dict(
type='ConvTransformerTokensToEmbeddingNeck',
embed_dim=embed_dim*num_frames,
output_embed_dim=output_embed_dim,
drop_cls_token=True,
Hp=14,
Wp=14),
decode_head=dict(
num_classes=len(CLASSES),
in_channels=output_embed_dim,
type='FCNHead',
in_index=-1,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False,
loss_decode=loss_func),
auxiliary_head=dict(
num_classes=len(CLASSES),
in_channels=output_embed_dim,
type='FCNHead',
in_index=-1,
channels=256,
num_convs=2,
concat_input=False,
dropout_ratio=0.1,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False,
loss_decode=loss_func),
train_cfg=dict(),
test_cfg=dict(mode='slide', stride=(int(tile_size/2), int(tile_size/2)), crop_size=(tile_size, tile_size)))
gpu_ids = range(0, 1)
auto_resume = False |