|
--- |
|
license: llama3 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
model-index: |
|
- name: llama3-8b-instruct-summary |
|
results: [] |
|
language: |
|
- en |
|
datasets: |
|
- ibivibiv/summary_instruct |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
adapter: qlora |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
base_model_config: meta-llama/Meta-Llama-3-8B-Instruct |
|
datasets: |
|
- path: ibivibiv/summary_instruct |
|
type: alpaca |
|
flash_attention: true |
|
gradient_accumulation_steps: 4 |
|
gradient_checkpointing: true |
|
hf_use_auth_token: true |
|
hub_model_id: ibivibiv/llama3-8b-instruct-summary |
|
learning_rate: 0.0002 |
|
load_in_4bit: true |
|
logging_steps: 1 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_r: 32 |
|
lora_target_linear: true |
|
lr_scheduler: cosine |
|
micro_batch_size: 2 |
|
model_type: AutoModelForCausalLM |
|
num_epochs: 3 |
|
optimizer: paged_adamw_32bit |
|
output_dir: /job/out |
|
sample_packing: true |
|
save_safetensors: true |
|
sequence_len: 4096 |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
tokenizer_type: AutoTokenizer |
|
wandb_project: TuneStudio |
|
wandb_run_id: summllamma |
|
wandb_watch: 'true' |
|
warmup_steps: 10 |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# llama3-8b-instruct-summary |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the ibivibiv/summary_instruct dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |