File size: 9,410 Bytes
8bcf33d
 
 
 
 
 
 
 
 
 
bbbe1ae
8bcf33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bcf33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
license: llama2
language:
- en
tags:
- summary

---
# Bubo Bubo 13B

![img](./bubo-bubo.png)

# Prompting

## Prompt Template for alpaca style

```
### Instruction:

<prompt> (without the <>)

### Response:
```

## Sample Code

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")

model = AutoModelForCausalLM.from_pretrained("ibivibiv/bubo-bubo-13b", torch_dtype="auto", device_config='auto')
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/bubo-bubo-13b")

inputs = tokenizer("### Instruction: Summarize this email chain :  <email chain stuff here>.\n### Response:\n", return_tensors="pt", return_attention_mask=False)

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```

# Model Details
* **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv)
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **Model type:**  **bubo-bubo-13b** is an auto-regressive language model fine tuned on the Llama 2 transformer architecture.
* **Language(s)**: English
* **Purpose**: Has specific training for summary tasks.  This model is targeted towards summarizing communication chains specifically.

# Benchmark Scores

I ran the benchmark harness, for curiousity, but this model is completely geared towards summarizing.

| Test Name                                            | Accuracy             |
|------------------------------------------------------|----------------------|
| all                                                  | 0.579149139810157    |
| arc:challenge                           | 0.5631399317406144   |
| hellaswag                               | 0.6317466640111532   |
| hendrycksTest-abstract_algebra           | 0.32                 |
| hendrycksTest-anatomy                    | 0.5481481481481482   |
| hendrycksTest-astronomy                  | 0.5657894736842105   |
| hendrycksTest-business_ethics            | 0.55                 |
| hendrycksTest-clinical_knowledge         | 0.6                  |
| hendrycksTest-college_biology            | 0.6388888888888888   |
| hendrycksTest-college_chemistry          | 0.38                 |
| hendrycksTest-college_computer_science   | 0.43                 |
| hendrycksTest-college_mathematics        | 0.34                 |
| hendrycksTest-college_medicine           | 0.5260115606936416   |
| hendrycksTest-college_physics            | 0.3431372549019608   |
| hendrycksTest-computer_security          | 0.71                 |
| hendrycksTest-conceptual_physics         | 0.49361702127659574  |
| hendrycksTest-econometrics               | 0.35964912280701755  |
| hendrycksTest-electrical_engineering     | 0.5586206896551724   |
| hendrycksTest-elementary_mathematics     | 0.3439153439153439   |
| hendrycksTest-formal_logic               | 0.3333333333333333   |
| hendrycksTest-global_facts               | 0.42                 |
| hendrycksTest-high_school_biology        | 0.6903225806451613   |
| hendrycksTest-high_school_chemistry      | 0.45320197044334976  |
| hendrycksTest-high_school_computer_science | 0.58              |
| hendrycksTest-high_school_european_history | 0.6787878787878788 |
| hendrycksTest-high_school_geography      | 0.7424242424242424   |
| hendrycksTest-high_school_government_and_politics | 0.8341968911917098 |
| hendrycksTest-high_school_macroeconomics | 0.558974358974359    |
| hendrycksTest-high_school_mathematics    | 0.3                  |
| hendrycksTest-high_school_microeconomics | 0.5672268907563025   |
| hendrycksTest-high_school_physics        | 0.33112582781456956  |
| hendrycksTest-high_school_psychology     | 0.7577981651376147   |
| hendrycksTest-high_school_statistics     | 0.4212962962962963   |
| hendrycksTest-high_school_us_history     | 0.8186274509803921   |
| hendrycksTest-high_school_world_history  | 0.759493670886076    |
| hendrycksTest-human_aging                | 0.6547085201793722   |
| hendrycksTest-human_sexuality            | 0.6412213740458015   |
| hendrycksTest-international_law          | 0.6776859504132231   |
| hendrycksTest-jurisprudence              | 0.75                 |
| hendrycksTest-logical_fallacies          | 0.6993865030674846   |
| hendrycksTest-machine_learning           | 0.41964285714285715  |
| hendrycksTest-management                 | 0.7281553398058253   |
| hendrycksTest-marketing                  | 0.8504273504273504   |
| hendrycksTest-medical_genetics           | 0.6                  |
| hendrycksTest-miscellaneous              | 0.7624521072796935   |
| hendrycksTest-moral_disputes             | 0.6560693641618497   |
| hendrycksTest-moral_scenarios            | 0.4346368715083799   |
| hendrycksTest-nutrition                  | 0.673202614379085    |
| hendrycksTest-philosophy                 | 0.7009646302250804   |
| hendrycksTest-prehistory                 | 0.7067901234567902   |
| hendrycksTest-professional_accounting    | 0.4645390070921986   |
| hendrycksTest-professional_law           | 0.45697522816166886  |
| hendrycksTest-professional_medicine      | 0.5514705882352942   |
| hendrycksTest-professional_psychology    | 0.6013071895424836   |
| hendrycksTest-public_relations           | 0.6636363636363637   |
| hendrycksTest-security_studies           | 0.6448979591836734   |
| hendrycksTest-sociology                  | 0.7611940298507462   |
| hendrycksTest-us_foreign_policy          | 0.84                 |
| hendrycksTest-virology                   | 0.4819277108433735   |
| hendrycksTest-world_religions            | 0.7894736842105263   |
| truthfulqa:mc                            | 0.4762440289139372   |
| winogrande                               | 0.7616416732438832   |
| gsm8k                                    | 0.20621683093252463  |


## Citations

```
@misc{open-llm-leaderboard,
  author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
  title = {Open LLM Leaderboard},
  year = {2023},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
}
```
```
@software{eval-harness,
  author       = {Gao, Leo and
                  Tow, Jonathan and
                  Biderman, Stella and
                  Black, Sid and
                  DiPofi, Anthony and
                  Foster, Charles and
                  Golding, Laurence and
                  Hsu, Jeffrey and
                  McDonell, Kyle and
                  Muennighoff, Niklas and
                  Phang, Jason and
                  Reynolds, Laria and
                  Tang, Eric and
                  Thite, Anish and
                  Wang, Ben and
                  Wang, Kevin and
                  Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628}
}
```
```
@misc{clark2018think,
      title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
      author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
      year={2018},
      eprint={1803.05457},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```
```
@misc{zellers2019hellaswag,
      title={HellaSwag: Can a Machine Really Finish Your Sentence?},
      author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
      year={2019},
      eprint={1905.07830},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
```
@misc{hendrycks2021measuring,
      title={Measuring Massive Multitask Language Understanding},
      author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
      year={2021},
      eprint={2009.03300},
      archivePrefix={arXiv},
      primaryClass={cs.CY}
}
```
```
@misc{lin2022truthfulqa,
      title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
      author={Stephanie Lin and Jacob Hilton and Owain Evans},
      year={2022},
      eprint={2109.07958},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
```
@misc{DBLP:journals/corr/abs-1907-10641,
      title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
      author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
      year={2019},
      eprint={1907.10641},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
```
@misc{DBLP:journals/corr/abs-2110-14168,
      title={Training Verifiers to Solve Math Word Problems},
      author={Karl Cobbe and
                  Vineet Kosaraju and
                  Mohammad Bavarian and
                  Mark Chen and
                  Heewoo Jun and
                  Lukasz Kaiser and
                  Matthias Plappert and
                  Jerry Tworek and
                  Jacob Hilton and
                  Reiichiro Nakano and
                  Christopher Hesse and
                  John Schulman},
      year={2021},
      eprint={2110.14168},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```