Camelidae-8x13B / README.md
hywu's picture
upload README
a75ad98
|
raw
history blame
4.43 kB
metadata
datasets:
  - Open-Orca/SlimOrca
  - ise-uiuc/Magicoder-OSS-Instruct-75K
  - ise-uiuc/Magicoder-Evol-Instruct-110K
  - meta-math/MetaMathQA
language:
  - en
library_name: transformers
pipeline_tag: text-generation
arxiv: 2401.02731

Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks

News

Introduction

Camelidae models are trained utilizing Parameter-Efficient Sparsity Crafting techniques

Parameter-Efficient Sparsity Crafting can help dense models learn knowledge from different fields (including code and math). This appraoch perfrom instruction tuning and utilize MoE structure in an efficient way.

Specifically, Parameter-Efficient Sparsity Crafting utilizes parameter efficient techiniques including QLoRA and Adapter to perfrom Efficient Sparse Upcycling.

Model Lists

Model Download
Camelidae-8x7B 🤗HuggingFace
Camelidae-8x13B 🤗HuggingFace
Camelidae-8x34B 🤗HuggingFace

Performance

Model MMLU (5shot) GSM8k (5shot) MATH (4shot) HumanEval (0shot) MBPP (4shot) HellaSwag (10shot) TriviaQA (0shot)
GPT3.5 70.0% 57.1% 34.1% 48.1% - 85.5% -
Camelidae-8x34B 75.6% 78.3% 22.6% 43.9% 41.4% 85.3% 63.4%
SUSChat-34B 76.4% 72.3% 22.0% 11.6% 40.2% 83.9% 56.1%
Mixtral-8x7B-instruct 68.7% 71.7% 22.1% 25.6% 40.6% 86.5% 57.7%
LLaMA2-70B-chat 63.8% 59.3% 10.4% 32.3% 35.6% 84.8% 63.0%
Camelidae-8x13B 54.4% 52.6% 9.8% 30.6% 30.4% 82.5% 59.4%
LLaMA2-13B-chat 54.6% 37.1% 5.2% 18.9% 27.2% 81.9% 55.0%
Camelidae-8x7B 48.3% 44.0% 5.8% 18.3% 23.4% 79.2% 51.0%
LLaMA2-7B-chat 48.3% 26.3% 3.9% 12.2% 17.6% 78.6% 46.4%

We bold the highest scores for open-source models and all models separately.

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

# tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x7B", trust_remote_code=True)
# tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x13B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x34B", trust_remote_code=True)

# model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x7B", device_map="auto", trust_remote_code=True).eval()
# model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x13B", device_map="auto", trust_remote_code=True).eval()
model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x34B", device_map="auto", trust_remote_code=True).eval()

inputs = tokenizer('### Human:\nHow are you?\n ### Assistant:\n', return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

Citation

@article{wu2024parameter,
  title={Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks},
  author={Wu, Haoyuan and Zheng, Haisheng and Yu, Bei},
  journal={arXiv preprint arXiv:2401.02731},
  year={2024}
}

License

The source code in this repo is licensed under the Apache 2.0 License. Camelidae models are developed for academic research and free commercial use, all usage must adhere to the license from facebookresearch and 01-ai.