hywu commited on
Commit
a75ad98
·
1 Parent(s): 294dbf4

upload README

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Open-Orca/SlimOrca
4
+ - ise-uiuc/Magicoder-OSS-Instruct-75K
5
+ - ise-uiuc/Magicoder-Evol-Instruct-110K
6
+ - meta-math/MetaMathQA
7
+ language:
8
+ - en
9
+ library_name: transformers
10
+ pipeline_tag: text-generation
11
+ arxiv: 2401.02731
12
+ ---
13
+
14
+
15
+ # Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks
16
+
17
+ ## News
18
+ - 1/10/2024 - Camelidae models are now available on [🤗HuggingFace](https://huggingface.co/hywu).
19
+ - 1/4/2024 - We released the paper, [Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks](https://arxiv.org/abs/2401.02731).
20
+ - 12/22/2023 - We released the training [repo](https://github.com/wuhy68/Parameter-Efficient-MoE) that craft the dense model with LLaMA architecture to the MoE model.
21
+
22
+ ## Introduction
23
+ Camelidae models are trained utilizing Parameter-Efficient Sparsity Crafting techniques
24
+
25
+ Parameter-Efficient Sparsity Crafting can help dense models learn knowledge from different fields (including code and math). This appraoch perfrom instruction tuning and utilize MoE structure in an efficient way.
26
+
27
+ Specifically, Parameter-Efficient Sparsity Crafting utilizes parameter efficient techiniques including [QLoRA](https://arxiv.org/abs/2305.14314) and [Adapter](https://arxiv.org/abs/1902.00751) to perfrom Efficient [Sparse Upcycling](https://arxiv.org/abs/2212.05055).
28
+
29
+ ## Model Lists
30
+ | Model | Download
31
+ |---|---
32
+ Camelidae-8x7B | [🤗HuggingFace](https://huggingface.co/hywu/Camelidae-8x7B)
33
+ Camelidae-8x13B | [🤗HuggingFace](https://huggingface.co/hywu/Camelidae-8x13B)
34
+ Camelidae-8x34B | [🤗HuggingFace](https://huggingface.co/hywu/Camelidae-8x34B)
35
+
36
+ ## Performance
37
+ | Model | MMLU (5shot) | GSM8k (5shot) | MATH (4shot) | HumanEval (0shot) | MBPP (4shot) | HellaSwag (10shot) | TriviaQA (0shot) |
38
+ |----------------------:|:------------:|:-------------:|:------------:|:-----------------:|:------------:|:------------------:|:----------------:|
39
+ | GPT3.5 | 70.0% | 57.1% | **34.1%** | **48.1%** | - | 85.5% | - |
40
+ | Camelidae-8x34B | 75.6% | **78.3%** | **22.6%** | **43.9%** | **41.4%** | 85.3% | **63.4%** |
41
+ | SUSChat-34B | **76.4%** | 72.3% | 22.0% | 11.6% | 40.2% | 83.9% | 56.1% |
42
+ | Mixtral-8x7B-instruct | 68.7% | 71.7% | 22.1% | 25.6% | 40.6% | **86.5%** | 57.7% |
43
+ | LLaMA2-70B-chat | 63.8% | 59.3% | 10.4% | 32.3% | 35.6% | 84.8% | 63.0% |
44
+ | Camelidae-8x13B | 54.4% | 52.6% | 9.8% | 30.6% | 30.4% | 82.5% | 59.4% |
45
+ | LLaMA2-13B-chat | 54.6% | 37.1% | 5.2% | 18.9% | 27.2% | 81.9% | 55.0% |
46
+ | Camelidae-8x7B | 48.3% | 44.0% | 5.8% | 18.3% | 23.4% | 79.2% | 51.0% |
47
+ | LLaMA2-7B-chat | 48.3% | 26.3% | 3.9% | 12.2% | 17.6% | 78.6% | 46.4% |
48
+
49
+ We bold the highest scores for open-source models and all models separately.
50
+
51
+
52
+ ## Usage
53
+ ```python
54
+ from transformers import AutoModelForCausalLM, AutoTokenizer
55
+
56
+ # tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x7B", trust_remote_code=True)
57
+ # tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x13B", trust_remote_code=True)
58
+ tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x34B", trust_remote_code=True)
59
+
60
+ # model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x7B", device_map="auto", trust_remote_code=True).eval()
61
+ # model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x13B", device_map="auto", trust_remote_code=True).eval()
62
+ model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x34B", device_map="auto", trust_remote_code=True).eval()
63
+
64
+ inputs = tokenizer('### Human:\nHow are you?\n ### Assistant:\n', return_tensors='pt')
65
+ inputs = inputs.to(model.device)
66
+ pred = model.generate(**inputs)
67
+ print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
68
+ ```
69
+
70
+ ## Citation
71
+ ```bibtex
72
+ @article{wu2024parameter,
73
+ title={Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks},
74
+ author={Wu, Haoyuan and Zheng, Haisheng and Yu, Bei},
75
+ journal={arXiv preprint arXiv:2401.02731},
76
+ year={2024}
77
+ }
78
+ ```
79
+
80
+ ## License
81
+ The source code in this repo is licensed under the [Apache 2.0 License](https://github.com/wuhy68/Parameter-Efficient-MoE/blob/master/LICENSE). Camelidae models are developed for academic research and free commercial use, all usage must adhere to the license from [facebookresearch](https://github.com/facebookresearch/llama/blob/main/LICENSE) and [01-ai](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).