metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit_base_aihub_model_py
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9985872380503885
- name: Precision
type: precision
value: 0.9989954885489135
- name: Recall
type: recall
value: 0.998161142953993
- name: F1
type: f1
value: 0.9985770990024514
vit_base_aihub_model_py
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0217
- Accuracy: 0.9986
- Precision: 0.9990
- Recall: 0.9982
- F1: 0.9986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1235 | 1.0 | 149 | 0.0936 | 0.9858 | 0.9845 | 0.9814 | 0.9830 |
0.067 | 2.0 | 299 | 0.0622 | 0.9878 | 0.9909 | 0.9813 | 0.9859 |
0.049 | 3.0 | 448 | 0.0322 | 0.9968 | 0.9969 | 0.9959 | 0.9964 |
0.0477 | 4.0 | 598 | 0.0249 | 0.9978 | 0.9985 | 0.9965 | 0.9975 |
0.0336 | 4.98 | 745 | 0.0217 | 0.9986 | 0.9990 | 0.9982 | 0.9986 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3