File size: 2,317 Bytes
207aa1d
 
1730d66
 
207aa1d
0198ea9
207aa1d
 
 
0198ea9
 
 
 
 
207aa1d
 
 
 
 
 
 
 
 
 
0198ea9
207aa1d
0198ea9
 
 
1730d66
0198ea9
 
 
 
 
207aa1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730d66
207aa1d
1730d66
 
207aa1d
 
 
 
 
 
 
 
 
1730d66
207aa1d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- trl-lib/ultrafeedback_binarized
model-index:
- name: llama-3-8b-dpo-full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama-3-8b-dpo-full

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the trl-lib/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6491
- Rewards/chosen: -0.1814
- Rewards/rejected: -0.2255
- Rewards/accuracies: 0.5625
- Rewards/margins: 0.0441
- Logps/rejected: -419.1795
- Logps/chosen: -335.9990
- Logits/rejected: -1.1373
- Logits/chosen: -1.0280

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6411        | 0.8239 | 100  | 0.6494          | -0.1752        | -0.2195          | 0.5625             | 0.0443          | -418.5782      | -335.3811    | -1.1582         | -1.0463       |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.20.0