wav2vec2-base-cynthia-tedlium-2500-v2
This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6425
- Wer: 0.2033
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1196 | 6.58 | 500 | 0.6498 | 0.2103 |
0.1176 | 13.16 | 1000 | 0.6490 | 0.2169 |
0.1227 | 19.73 | 1500 | 0.6241 | 0.2127 |
0.1078 | 26.31 | 2000 | 0.6359 | 0.2118 |
0.0956 | 32.89 | 2500 | 0.6330 | 0.2073 |
0.1008 | 39.47 | 3000 | 0.6816 | 0.2036 |
0.09 | 46.05 | 3500 | 0.6425 | 0.2033 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3
- Downloads last month
- 2
This model can be loaded on the Inference API on-demand.