File size: 1,876 Bytes
68bab90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8daae
 
 
 
68bab90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59bab49
68bab90
 
 
 
 
 
59bab49
231ec93
f14e1f9
3f5583f
8eb677a
9f880c1
ed8daae
68bab90
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: huynhdoo/distilcamembert-base-finetuned-jva-missions-report
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# huynhdoo/distilcamembert-base-finetuned-jva-missions-report

This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1690
- Validation Loss: 0.8693
- Train F1: 0.1676
- Epoch: 6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train F1 | Epoch |
|:----------:|:---------------:|:--------:|:-----:|
| 0.5225     | 0.4756          | 0.3575   | 0     |
| 0.4079     | 0.4294          | 0.2961   | 1     |
| 0.3439     | 0.5053          | 0.2961   | 2     |
| 0.2765     | 0.5106          | 0.2346   | 3     |
| 0.2044     | 0.5352          | 0.1788   | 4     |
| 0.1774     | 0.6706          | 0.1341   | 5     |
| 0.1690     | 0.8693          | 0.1676   | 6     |


### Framework versions

- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2