SentenceTransformer based on huudan123/model_stage2_latest
This is a sentence-transformers model finetuned from huudan123/model_stage2_latest. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: huudan123/model_stage2_latest
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/model_stage3_latest")
# Run inference
sentences = [
'Tôi có thể nghĩ ra ba yếu tố chính là những phỏng đoán khá logic.',
'Đã có khá nhiều nghiên cứu trong bóng đá / bóng đá thảo luận về lợi thế sân nhà.',
'Cô gái đang đứng trước cánh cửa mở của xe buýt.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-evaluator
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8455 |
spearman_cosine | 0.8455 |
pearson_manhattan | 0.8362 |
spearman_manhattan | 0.8436 |
pearson_euclidean | 0.836 |
spearman_euclidean | 0.8435 |
pearson_dot | 0.8302 |
spearman_dot | 0.8289 |
pearson_max | 0.8455 |
spearman_max | 0.8455 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueeval_strategy
: epochper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 3e-05weight_decay
: 0.01num_train_epochs
: 15warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
---|---|---|---|---|
0 | 0 | - | - | 0.6849 |
0.5556 | 25 | 0.0801 | - | - |
1.0 | 45 | - | 0.0390 | 0.7990 |
1.1111 | 50 | 0.0388 | - | - |
1.6667 | 75 | 0.0309 | - | - |
2.0 | 90 | - | 0.0315 | 0.8401 |
2.2222 | 100 | 0.0264 | - | - |
2.7778 | 125 | 0.0222 | - | - |
3.0 | 135 | - | 0.0302 | 0.8412 |
3.3333 | 150 | 0.0188 | - | - |
3.8889 | 175 | 0.0164 | - | - |
4.0 | 180 | - | 0.0300 | 0.8411 |
4.4444 | 200 | 0.0138 | - | - |
5.0 | 225 | 0.0135 | 0.0291 | 0.8446 |
5.5556 | 250 | 0.011 | - | - |
6.0 | 270 | - | 0.0291 | 0.8458 |
6.1111 | 275 | 0.0104 | - | - |
6.6667 | 300 | 0.0093 | - | - |
7.0 | 315 | - | 0.0280 | 0.8479 |
7.2222 | 325 | 0.0088 | - | - |
7.7778 | 350 | 0.0081 | - | - |
8.0 | 360 | - | 0.0285 | 0.848 |
8.3333 | 375 | 0.0075 | - | - |
8.8889 | 400 | 0.0071 | - | - |
9.0 | 405 | - | 0.0285 | 0.8463 |
9.4444 | 425 | 0.0066 | - | - |
10.0 | 450 | 0.0066 | 0.0287 | 0.8455 |
10.5556 | 475 | 0.0062 | - | - |
11.0 | 495 | - | 0.0285 | 0.8458 |
11.1111 | 500 | 0.0058 | - | - |
11.6667 | 525 | 0.0056 | - | - |
12.0 | 540 | - | 0.0291 | 0.8452 |
12.2222 | 550 | 0.0055 | - | - |
12.7778 | 575 | 0.0053 | - | - |
13.0 | 585 | - | 0.0289 | 0.8455 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for huudan123/model_stage3_latest
Base model
vinai/phobert-base-v2
Finetuned
huudan123/model_stage1_latest
Finetuned
huudan123/model_stage2_latest
Evaluation results
- Pearson Cosine on sts evaluatorself-reported0.845
- Spearman Cosine on sts evaluatorself-reported0.846
- Pearson Manhattan on sts evaluatorself-reported0.836
- Spearman Manhattan on sts evaluatorself-reported0.844
- Pearson Euclidean on sts evaluatorself-reported0.836
- Spearman Euclidean on sts evaluatorself-reported0.843
- Pearson Dot on sts evaluatorself-reported0.830
- Spearman Dot on sts evaluatorself-reported0.829
- Pearson Max on sts evaluatorself-reported0.845
- Spearman Max on sts evaluatorself-reported0.846