File size: 4,455 Bytes
2f6b433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: apache-2.0
datasets:
- huihui-ai/QWQ-LONGCOT-500K
- huihui-ai/LONGCOT-Refine-500K
base_model:
- huihui-ai/Llama-3.2-3B-Instruct-abliterated

tags:
- llama3.2
- abliterated
- uncensored
---
# MicroThinker-3B-Preview

MicroThinker-3B-Preview, a new model fine-tuned from the [huihui-ai/Llama-3.2-3B-Instruct-abliterated](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) model, focused on advancing AI reasoning capabilities. 

## Training Details

This is just a test, but the performance is quite good. 

The model is still being fine-tuned, but it will be ready very soon.

Now, I'll introduce the test environment.

The model was trained using 1 RTX 4090 GPU(24GB) .

The fine-tuning process used only 20,000 records from each dataset.

The [SFT (Supervised Fine-Tuning)](https://github.com/modelscope/ms-swift) process is divided into several steps, and no code needs to be written.
1. Create the environment.

```
conda create -yn ms-swift python=3.11
conda activate ms-swift

git clone https://github.com/modelscope/ms-swift.git

cd ms-swift
pip install -e .
cd ..
```


2. Download the model and dataset.

```
huggingface-cli download huihui-ai/Llama-3.2-3B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-3B-Instruct-abliterated
huggingface-cli download --repo-type  dataset huihui-ai/QWQ-LONGCOT-500K --local-dir ./data/QWQ-LONGCOT-500K
huggingface-cli download --repo-type  dataset huihui-ai/LONGCOT-Refine-500K --local-dir ./data/LONGCOT-Refine-500K
```


3. Used only the huihui-ai/QWQ-LONGCOT-500K dataset (#20000), Trained for 1 epoch:

```
swift sft --model huihui-ai/Llama-3.2-3B-Instruct-abliterated --model_type llama3_2 --train_type lora --dataset "data/QWQ-LONGCOT-500K/qwq_500k.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5  --max_length 16384  --output_dir output/Llama-3.2-3B-Instruct-abliterated/lora/sft --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
```


4. Save the fine-tuned model.
Replace the directories below with specific ones.

```
swift infer --model huihui-ai/Llama-3.2-3B-Instruct-abliterated --adapters output/Llama-3.2-3B-Instruct-abliterated/lora/sft/v0-20250102-153619/checkpoint-1237 --merge_lora true 
```


This should create a new model directory: `checkpoint-1237-merged`, Copy or move this directory to the `huihui` directory.

5. Perform inference on the fine-tuned model.

```
swift infer --model huihui/checkpoint-1237-merged --stream true --infer_backend pt --max_new_tokens 8192
```


6. Combined training with huihui-ai/QWQ-LONGCOT-500K (#20000) and huihui-ai/LONGCOT-Refine datasets (#20000), Trained for 1 epoch:

```
swift sft --model huihui-ai/checkpoint-1237-merged --model_type llama3_2 --train_type lora --dataset "data/QWQ-LONGCOT-500K/qwq_500k.jsonl#20000" "data/LONGCOT-Refine-500K/refine_from_qwen2_5.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5  --max_length 16384  --output_dir output/Llama-3.2-3B-Instruct-abliterated/lora/sft2 --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
```


7. Save the final fine-tuned model.
Replace the directories below with specific ones.

```
swift infer --model huihui-ai/checkpoint-1237-merged --adapters output/Llama-3.2-3B-Instruct-abliterated/lora/sft2/v0-20250103-121319/checkpoint-1237 --merge_lora true 
```


This should create a new model directory: `checkpoint-1237-merged`, Rename the directory to `MicroThinker-3B-Preview`, Copy or move this directory to the `huihui` directory.

8. Perform inference on the final fine-tuned model.

```
swift infer --model huihui/MicroThinker-3B-Preview --stream true --infer_backend pt --max_new_tokens 8192
```

9. Test examples.

```
How many 'r' characters are there in the word "strawberry"?
```