smol-1.7-tq

This model is a fine-tuned version of HuggingFaceTB/SmolLM2-1.7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4523
  • = Precision: 0.0
  • = Recall: 0.0
  • = F1-score: 0.0
  • = Support: 31.0
    • Precision: 0.0
    • Recall: 0.0
    • F1-score: 0.0
    • Support: 113.0
  • < Precision: 0.6985
  • < Recall: 0.7925
  • < F1-score: 0.7425
  • < Support: 424.0
  • Precision: 0.6167

  • Recall: 0.7955

  • F1-score: 0.6948

  • Support: 269.0

  • Accuracy: 0.6571
  • Macro Avg Precision: 0.3288
  • Macro Avg Recall: 0.3970
  • Macro Avg F1-score: 0.3593
  • Macro Avg Support: 837.0
  • Weighted Avg Precision: 0.5521
  • Weighted Avg Recall: 0.6571
  • Weighted Avg F1-score: 0.5995
  • Weighted Avg Support: 837.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: reduce_lr_on_plateau
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss = Precision = Recall = F1-score = Support - Precision - Recall - F1-score - Support < Precision < Recall < F1-score < Support > Precision > Recall > F1-score > Support Accuracy Macro Avg Precision Macro Avg Recall Macro Avg F1-score Macro Avg Support Weighted Avg Precision Weighted Avg Recall Weighted Avg F1-score Weighted Avg Support
3.6479 1.0 25 0.4992 0.0 0.0 0.0 31.0 0.0 0.0 0.0 113.0 0.5950 0.7830 0.6762 424.0 0.5471 0.5613 0.5541 269.0 0.5771 0.2855 0.3361 0.3076 837.0 0.4772 0.5771 0.5206 837.0
2.5144 2.0 50 0.4460 0.0 0.0 0.0 31.0 0.2222 0.0177 0.0328 113.0 0.6438 0.8184 0.7207 424.0 0.6228 0.6691 0.6452 269.0 0.6320 0.3722 0.3763 0.3497 837.0 0.5563 0.6320 0.5768 837.0
2.207 3.0 75 0.4411 0.0 0.0 0.0 31.0 0.0 0.0 0.0 113.0 0.6798 0.8160 0.7417 424.0 0.6288 0.7621 0.6891 269.0 0.6583 0.3271 0.3945 0.3577 837.0 0.5464 0.6583 0.5972 837.0
1.7458 4.0 100 0.4523 0.0 0.0 0.0 31.0 0.0 0.0 0.0 113.0 0.6985 0.7925 0.7425 424.0 0.6167 0.7955 0.6948 269.0 0.6571 0.3288 0.3970 0.3593 837.0 0.5521 0.6571 0.5995 837.0
1.6753 5.0 125 0.4816 0.0 0.0 0.0 31.0 0.0833 0.0177 0.0292 113.0 0.6744 0.8255 0.7423 424.0 0.6497 0.7100 0.6785 269.0 0.6487 0.3518 0.3883 0.3625 837.0 0.5617 0.6487 0.5980 837.0
1.244 6.0 150 0.5072 0.0 0.0 0.0 31.0 0.1412 0.1062 0.1212 113.0 0.6889 0.7783 0.7309 424.0 0.6554 0.6506 0.6530 269.0 0.6177 0.3714 0.3838 0.3763 837.0 0.5787 0.6177 0.5965 837.0
1.04 7.0 175 0.5208 0.0 0.0 0.0 31.0 0.1296 0.0619 0.0838 113.0 0.6803 0.7830 0.7281 424.0 0.6395 0.6989 0.6679 269.0 0.6296 0.3624 0.3860 0.3699 837.0 0.5676 0.6296 0.5948 837.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
1.78B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for hugosousa/smol-1.7-tq

Finetuned
(21)
this model