File size: 23,334 Bytes
3074d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import math
import collections.abc

import torch
import torch.nn as nn
import torch.nn.functional as F
import functools

from einops import rearrange
from itertools import repeat
from functools import partial
from .utils import approx_gelu, get_layernorm, t2i_modulate
from typing import Optional


try:
    import xformers
    HAS_XFORMERS = True
except:
    HAS_XFORMERS = False


# =================
# STDiT2Block
# =================
class STDiT2Block(nn.Module):
    def __init__(
        self,
        hidden_size,
        num_heads,
        mlp_ratio=4.0,
        drop_path=0.0,
        enable_flash_attn=False,
        enable_layernorm_kernel=False,
        enable_sequence_parallelism=False,
        rope=None,
        qk_norm=False,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.enable_flash_attn = enable_flash_attn
        self._enable_sequence_parallelism = enable_sequence_parallelism

        assert not self._enable_sequence_parallelism, "Sequence parallelism is not supported."
        if enable_sequence_parallelism:
            self.attn_cls = SeqParallelAttention
            self.mha_cls = SeqParallelMultiHeadCrossAttention
        else:
            self.attn_cls = Attention
            self.mha_cls = MultiHeadCrossAttention

        # spatial branch
        self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
        self.attn = self.attn_cls(
            hidden_size,
            num_heads=num_heads,
            qkv_bias=True,
            enable_flash_attn=enable_flash_attn,
            qk_norm=qk_norm,
        )
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)

        # cross attn
        self.cross_attn = self.mha_cls(hidden_size, num_heads)

        # mlp branch
        self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
        self.mlp = Mlp(
            in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        # temporal branch
        self.norm_temp = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)  # new
        self.attn_temp = self.attn_cls(
            hidden_size,
            num_heads=num_heads,
            qkv_bias=True,
            enable_flash_attn=self.enable_flash_attn,
            rope=rope,
            qk_norm=qk_norm,
        )
        self.scale_shift_table_temporal = nn.Parameter(torch.randn(3, hidden_size) / hidden_size**0.5)  # new

    def t_mask_select(self, x_mask, x, masked_x, T, S):
        # x: [B, (T, S), C]
        # mased_x: [B, (T, S), C]
        # x_mask: [B, T]
        x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
        masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
        x = torch.where(x_mask[:, :, None, None], x, masked_x)
        x = rearrange(x, "B T S C -> B (T S) C")
        return x

    def forward(self, x, y, t, t_tmp, mask=None, x_mask=None, t0=None, t0_tmp=None, T=None, S=None):
        B, N, C = x.shape

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)
        ).chunk(6, dim=1)
        shift_tmp, scale_tmp, gate_tmp = (self.scale_shift_table_temporal[None] + t_tmp.reshape(B, 3, -1)).chunk(
            3, dim=1
        )
        if x_mask is not None:
            shift_msa_zero, scale_msa_zero, gate_msa_zero, shift_mlp_zero, scale_mlp_zero, gate_mlp_zero = (
                self.scale_shift_table[None] + t0.reshape(B, 6, -1)
            ).chunk(6, dim=1)
            shift_tmp_zero, scale_tmp_zero, gate_tmp_zero = (
                self.scale_shift_table_temporal[None] + t0_tmp.reshape(B, 3, -1)
            ).chunk(3, dim=1)

        # modulate
        x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa)
        if x_mask is not None:
            x_m_zero = t2i_modulate(self.norm1(x), shift_msa_zero, scale_msa_zero)
            x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)

        # spatial branch
        x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=T, S=S)
        x_s = self.attn(x_s)
        x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=T, S=S)
        if x_mask is not None:
            x_s_zero = gate_msa_zero * x_s
            x_s = gate_msa * x_s
            x_s = self.t_mask_select(x_mask, x_s, x_s_zero, T, S)
        else:
            x_s = gate_msa * x_s
        x = x + self.drop_path(x_s)

        # modulate
        x_m = t2i_modulate(self.norm_temp(x), shift_tmp, scale_tmp)
        if x_mask is not None:
            x_m_zero = t2i_modulate(self.norm_temp(x), shift_tmp_zero, scale_tmp_zero)
            x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)

        # temporal branch
        x_t = rearrange(x_m, "B (T S) C -> (B S) T C", T=T, S=S)
        x_t = self.attn_temp(x_t)
        x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=T, S=S)
        if x_mask is not None:
            x_t_zero = gate_tmp_zero * x_t
            x_t = gate_tmp * x_t
            x_t = self.t_mask_select(x_mask, x_t, x_t_zero, T, S)
        else:
            x_t = gate_tmp * x_t
        x = x + self.drop_path(x_t)

        # cross attn
        x = x + self.cross_attn(x, y, mask)

        # modulate
        x_m = t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)
        if x_mask is not None:
            x_m_zero = t2i_modulate(self.norm2(x), shift_mlp_zero, scale_mlp_zero)
            x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)

        # mlp
        x_mlp = self.mlp(x_m)
        if x_mask is not None:
            x_mlp_zero = gate_mlp_zero * x_mlp
            x_mlp = gate_mlp * x_mlp
            x_mlp = self.t_mask_select(x_mask, x_mlp, x_mlp_zero, T, S)
        else:
            x_mlp = gate_mlp * x_mlp
        x = x + self.drop_path(x_mlp)

        return x
    

# =================
# Attention
# =================
class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)
    
class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = LlamaRMSNorm,
        enable_flash_attn: bool = False,
        rope=None,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        self.enable_flash_attn = enable_flash_attn

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.rope = False
        if rope is not None:
            self.rope = True
            self.rotary_emb = rope

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape
        # flash attn is not memory efficient for small sequences, this is empirical
        enable_flash_attn = self.enable_flash_attn and (N > B)
        qkv = self.qkv(x)
        qkv_shape = (B, N, 3, self.num_heads, self.head_dim)

        qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        if self.rope:
            q = self.rotary_emb(q)
            k = self.rotary_emb(k)
        q, k = self.q_norm(q), self.k_norm(k)

        if enable_flash_attn:
            from flash_attn import flash_attn_func

            # (B, #heads, N, #dim) -> (B, N, #heads, #dim)
            q = q.permute(0, 2, 1, 3)
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            x = flash_attn_func(
                q,
                k,
                v,
                dropout_p=self.attn_drop.p if self.training else 0.0,
                softmax_scale=self.scale,
            )
        else:
            dtype = q.dtype
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)  # translate attn to float32
            attn = attn.to(torch.float32)
            attn = attn.softmax(dim=-1)
            attn = attn.to(dtype)  # cast back attn to original dtype
            attn = self.attn_drop(attn)
            x = attn @ v

        x_output_shape = (B, N, C)
        if not enable_flash_attn:
            x = x.transpose(1, 2)
        x = x.reshape(x_output_shape)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


# ========================
# MultiHeadCrossAttention
# ========================
class MultiHeadCrossAttention(nn.Module):
    def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
        super(MultiHeadCrossAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"

        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = d_model // num_heads

        self.q_linear = nn.Linear(d_model, d_model)
        self.kv_linear = nn.Linear(d_model, d_model * 2)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(d_model, d_model)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, cond, mask=None):
        # query/value: img tokens; key: condition; mask: if padding tokens
        B, N, C = x.shape

        q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
        kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
        k, v = kv.unbind(2)

        attn_bias = None
        if mask is not None:
            attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
        x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)

        x = x.view(B, -1, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
    

# =================
# Timm Components 
# =================
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor

class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f'drop_prob={round(self.drop_prob,3):0.3f}'
    
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse

to_2tuple = _ntuple(2)

class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            norm_layer=None,
            bias=True,
            drop=0.,
            use_conv=False,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear

        self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
        self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x
    

# =================
# Embedding
# =================
class CaptionEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(
        self,
        in_channels,
        hidden_size,
        uncond_prob,
        act_layer=nn.GELU(approximate="tanh"),
        token_num=120,
    ):
        super().__init__()
        self.y_proj = Mlp(
            in_features=in_channels,
            hidden_features=hidden_size,
            out_features=hidden_size,
            act_layer=act_layer,
            drop=0,
        )
        self.register_buffer(
            "y_embedding",
            torch.randn(token_num, in_channels) / in_channels**0.5,
        )
        self.uncond_prob = uncond_prob

    def token_drop(self, caption, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
        else:
            drop_ids = force_drop_ids == 1
        caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
        return caption

    def forward(self, caption, train, force_drop_ids=None):
        if train:
            assert caption.shape[2:] == self.y_embedding.shape
        use_dropout = self.uncond_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            caption = self.token_drop(caption, force_drop_ids)
        caption = self.y_proj(caption)
        return caption
    

class PatchEmbed3D(nn.Module):
    """Video to Patch Embedding.

    Args:
        patch_size (int): Patch token size. Default: (2,4,4).
        in_chans (int): Number of input video channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self,
        patch_size=(2, 4, 4),
        in_chans=3,
        embed_dim=96,
        norm_layer=None,
        flatten=True,
    ):
        super().__init__()
        self.patch_size = patch_size
        self.flatten = flatten

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, D, H, W = x.size()
        if W % self.patch_size[2] != 0:
            x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
        if H % self.patch_size[1] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
        if D % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))

        x = self.proj(x)  # (B C T H W)
        if self.norm is not None:
            D, Wh, Ww = x.size(2), x.size(3), x.size(4)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCTHW -> BNC
        return x
    
class T2IFinalLayer(nn.Module):
    """
    The final layer of PixArt.
    """

    def __init__(self, hidden_size, num_patch, out_channels, d_t=None, d_s=None):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
        self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
        self.out_channels = out_channels
        self.d_t = d_t
        self.d_s = d_s

    def t_mask_select(self, x_mask, x, masked_x, T, S):
        # x: [B, (T, S), C]
        # mased_x: [B, (T, S), C]
        # x_mask: [B, T]
        x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
        masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
        x = torch.where(x_mask[:, :, None, None], x, masked_x)
        x = rearrange(x, "B T S C -> B (T S) C")
        return x

    def forward(self, x, t, x_mask=None, t0=None, T=None, S=None):
        if T is None:
            T = self.d_t
        if S is None:
            S = self.d_s
        shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
        x = t2i_modulate(self.norm_final(x), shift, scale)
        if x_mask is not None:
            shift_zero, scale_zero = (self.scale_shift_table[None] + t0[:, None]).chunk(2, dim=1)
            x_zero = t2i_modulate(self.norm_final(x), shift_zero, scale_zero)
            x = self.t_mask_select(x_mask, x, x_zero, T, S)
        x = self.linear(x)
        return x
    
class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
        freqs = freqs.to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t, dtype):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        if t_freq.dtype != dtype:
            t_freq = t_freq.to(dtype)
        t_emb = self.mlp(t_freq)
        return t_emb
    
class SizeEmbedder(TimestepEmbedder):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size
        self.outdim = hidden_size

    def forward(self, s, bs):
        if s.ndim == 1:
            s = s[:, None]
        assert s.ndim == 2
        if s.shape[0] != bs:
            s = s.repeat(bs // s.shape[0], 1)
            assert s.shape[0] == bs
        b, dims = s.shape[0], s.shape[1]
        s = rearrange(s, "b d -> (b d)")
        s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
        s_emb = self.mlp(s_freq)
        s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
        return s_emb

    @property
    def dtype(self):
        return next(self.parameters()).dtype


class PositionEmbedding2D(nn.Module):
    def __init__(self, dim: int) -> None:
        super().__init__()
        self.dim = dim
        assert dim % 4 == 0, "dim must be divisible by 4"
        half_dim = dim // 2
        inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def _get_sin_cos_emb(self, t: torch.Tensor):
        out = torch.einsum("i,d->id", t, self.inv_freq)
        emb_cos = torch.cos(out)
        emb_sin = torch.sin(out)
        return torch.cat((emb_sin, emb_cos), dim=-1)

    @functools.lru_cache(maxsize=512)
    def _get_cached_emb(
        self,
        device: torch.device,
        dtype: torch.dtype,
        h: int,
        w: int,
        scale: float = 1.0,
        base_size: Optional[int] = None,
    ):
        grid_h = torch.arange(h, device=device) / scale
        grid_w = torch.arange(w, device=device) / scale
        if base_size is not None:
            grid_h *= base_size / h
            grid_w *= base_size / w
        grid_h, grid_w = torch.meshgrid(
            grid_w,
            grid_h,
            indexing="ij",
        )  # here w goes first
        grid_h = grid_h.t().reshape(-1)
        grid_w = grid_w.t().reshape(-1)
        emb_h = self._get_sin_cos_emb(grid_h)
        emb_w = self._get_sin_cos_emb(grid_w)
        return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype)

    def forward(
        self,
        x: torch.Tensor,
        h: int,
        w: int,
        scale: Optional[float] = 1.0,
        base_size: Optional[int] = None,
    ) -> torch.Tensor:
        return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size)