File size: 23,334 Bytes
3074d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import math
import collections.abc
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
from einops import rearrange
from itertools import repeat
from functools import partial
from .utils import approx_gelu, get_layernorm, t2i_modulate
from typing import Optional
try:
import xformers
HAS_XFORMERS = True
except:
HAS_XFORMERS = False
# =================
# STDiT2Block
# =================
class STDiT2Block(nn.Module):
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio=4.0,
drop_path=0.0,
enable_flash_attn=False,
enable_layernorm_kernel=False,
enable_sequence_parallelism=False,
rope=None,
qk_norm=False,
):
super().__init__()
self.hidden_size = hidden_size
self.enable_flash_attn = enable_flash_attn
self._enable_sequence_parallelism = enable_sequence_parallelism
assert not self._enable_sequence_parallelism, "Sequence parallelism is not supported."
if enable_sequence_parallelism:
self.attn_cls = SeqParallelAttention
self.mha_cls = SeqParallelMultiHeadCrossAttention
else:
self.attn_cls = Attention
self.mha_cls = MultiHeadCrossAttention
# spatial branch
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.attn = self.attn_cls(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
enable_flash_attn=enable_flash_attn,
qk_norm=qk_norm,
)
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
# cross attn
self.cross_attn = self.mha_cls(hidden_size, num_heads)
# mlp branch
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
# temporal branch
self.norm_temp = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) # new
self.attn_temp = self.attn_cls(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
enable_flash_attn=self.enable_flash_attn,
rope=rope,
qk_norm=qk_norm,
)
self.scale_shift_table_temporal = nn.Parameter(torch.randn(3, hidden_size) / hidden_size**0.5) # new
def t_mask_select(self, x_mask, x, masked_x, T, S):
# x: [B, (T, S), C]
# mased_x: [B, (T, S), C]
# x_mask: [B, T]
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
x = torch.where(x_mask[:, :, None, None], x, masked_x)
x = rearrange(x, "B T S C -> B (T S) C")
return x
def forward(self, x, y, t, t_tmp, mask=None, x_mask=None, t0=None, t0_tmp=None, T=None, S=None):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)
).chunk(6, dim=1)
shift_tmp, scale_tmp, gate_tmp = (self.scale_shift_table_temporal[None] + t_tmp.reshape(B, 3, -1)).chunk(
3, dim=1
)
if x_mask is not None:
shift_msa_zero, scale_msa_zero, gate_msa_zero, shift_mlp_zero, scale_mlp_zero, gate_mlp_zero = (
self.scale_shift_table[None] + t0.reshape(B, 6, -1)
).chunk(6, dim=1)
shift_tmp_zero, scale_tmp_zero, gate_tmp_zero = (
self.scale_shift_table_temporal[None] + t0_tmp.reshape(B, 3, -1)
).chunk(3, dim=1)
# modulate
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa)
if x_mask is not None:
x_m_zero = t2i_modulate(self.norm1(x), shift_msa_zero, scale_msa_zero)
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)
# spatial branch
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=T, S=S)
x_s = self.attn(x_s)
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=T, S=S)
if x_mask is not None:
x_s_zero = gate_msa_zero * x_s
x_s = gate_msa * x_s
x_s = self.t_mask_select(x_mask, x_s, x_s_zero, T, S)
else:
x_s = gate_msa * x_s
x = x + self.drop_path(x_s)
# modulate
x_m = t2i_modulate(self.norm_temp(x), shift_tmp, scale_tmp)
if x_mask is not None:
x_m_zero = t2i_modulate(self.norm_temp(x), shift_tmp_zero, scale_tmp_zero)
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)
# temporal branch
x_t = rearrange(x_m, "B (T S) C -> (B S) T C", T=T, S=S)
x_t = self.attn_temp(x_t)
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=T, S=S)
if x_mask is not None:
x_t_zero = gate_tmp_zero * x_t
x_t = gate_tmp * x_t
x_t = self.t_mask_select(x_mask, x_t, x_t_zero, T, S)
else:
x_t = gate_tmp * x_t
x = x + self.drop_path(x_t)
# cross attn
x = x + self.cross_attn(x, y, mask)
# modulate
x_m = t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)
if x_mask is not None:
x_m_zero = t2i_modulate(self.norm2(x), shift_mlp_zero, scale_mlp_zero)
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)
# mlp
x_mlp = self.mlp(x_m)
if x_mask is not None:
x_mlp_zero = gate_mlp_zero * x_mlp
x_mlp = gate_mlp * x_mlp
x_mlp = self.t_mask_select(x_mask, x_mlp, x_mlp_zero, T, S)
else:
x_mlp = gate_mlp * x_mlp
x = x + self.drop_path(x_mlp)
return x
# =================
# Attention
# =================
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: nn.Module = LlamaRMSNorm,
enable_flash_attn: bool = False,
rope=None,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.enable_flash_attn = enable_flash_attn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.rope = False
if rope is not None:
self.rope = True
self.rotary_emb = rope
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
# flash attn is not memory efficient for small sequences, this is empirical
enable_flash_attn = self.enable_flash_attn and (N > B)
qkv = self.qkv(x)
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
q, k = self.q_norm(q), self.k_norm(k)
if enable_flash_attn:
from flash_attn import flash_attn_func
# (B, #heads, N, #dim) -> (B, N, #heads, #dim)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
x = flash_attn_func(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
softmax_scale=self.scale,
)
else:
dtype = q.dtype
q = q * self.scale
attn = q @ k.transpose(-2, -1) # translate attn to float32
attn = attn.to(torch.float32)
attn = attn.softmax(dim=-1)
attn = attn.to(dtype) # cast back attn to original dtype
attn = self.attn_drop(attn)
x = attn @ v
x_output_shape = (B, N, C)
if not enable_flash_attn:
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x
# ========================
# MultiHeadCrossAttention
# ========================
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model * 2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
attn_bias = None
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
# =================
# Timm Components
# =================
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f'drop_prob={round(self.drop_prob,3):0.3f}'
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=None,
bias=True,
drop=0.,
use_conv=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.norm(x)
x = self.fc2(x)
x = self.drop2(x)
return x
# =================
# Embedding
# =================
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(
self,
in_channels,
hidden_size,
uncond_prob,
act_layer=nn.GELU(approximate="tanh"),
token_num=120,
):
super().__init__()
self.y_proj = Mlp(
in_features=in_channels,
hidden_features=hidden_size,
out_features=hidden_size,
act_layer=act_layer,
drop=0,
)
self.register_buffer(
"y_embedding",
torch.randn(token_num, in_channels) / in_channels**0.5,
)
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
class PatchEmbed3D(nn.Module):
"""Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_chans (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(
self,
patch_size=(2, 4, 4),
in_chans=3,
embed_dim=96,
norm_layer=None,
flatten=True,
):
super().__init__()
self.patch_size = patch_size
self.flatten = flatten
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
x = self.proj(x) # (B C T H W)
if self.norm is not None:
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, num_patch, out_channels, d_t=None, d_s=None):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
self.out_channels = out_channels
self.d_t = d_t
self.d_s = d_s
def t_mask_select(self, x_mask, x, masked_x, T, S):
# x: [B, (T, S), C]
# mased_x: [B, (T, S), C]
# x_mask: [B, T]
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
x = torch.where(x_mask[:, :, None, None], x, masked_x)
x = rearrange(x, "B T S C -> B (T S) C")
return x
def forward(self, x, t, x_mask=None, t0=None, T=None, S=None):
if T is None:
T = self.d_t
if S is None:
S = self.d_s
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
if x_mask is not None:
shift_zero, scale_zero = (self.scale_shift_table[None] + t0[:, None]).chunk(2, dim=1)
x_zero = t2i_modulate(self.norm_final(x), shift_zero, scale_zero)
x = self.t_mask_select(x_mask, x, x_zero, T, S)
x = self.linear(x)
return x
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
freqs = freqs.to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, dtype):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
if t_freq.dtype != dtype:
t_freq = t_freq.to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs // s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
s_emb = self.mlp(s_freq)
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
@property
def dtype(self):
return next(self.parameters()).dtype
class PositionEmbedding2D(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
assert dim % 4 == 0, "dim must be divisible by 4"
half_dim = dim // 2
inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _get_sin_cos_emb(self, t: torch.Tensor):
out = torch.einsum("i,d->id", t, self.inv_freq)
emb_cos = torch.cos(out)
emb_sin = torch.sin(out)
return torch.cat((emb_sin, emb_cos), dim=-1)
@functools.lru_cache(maxsize=512)
def _get_cached_emb(
self,
device: torch.device,
dtype: torch.dtype,
h: int,
w: int,
scale: float = 1.0,
base_size: Optional[int] = None,
):
grid_h = torch.arange(h, device=device) / scale
grid_w = torch.arange(w, device=device) / scale
if base_size is not None:
grid_h *= base_size / h
grid_w *= base_size / w
grid_h, grid_w = torch.meshgrid(
grid_w,
grid_h,
indexing="ij",
) # here w goes first
grid_h = grid_h.t().reshape(-1)
grid_w = grid_w.t().reshape(-1)
emb_h = self._get_sin_cos_emb(grid_h)
emb_w = self._get_sin_cos_emb(grid_w)
return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype)
def forward(
self,
x: torch.Tensor,
h: int,
w: int,
scale: Optional[float] = 1.0,
base_size: Optional[int] = None,
) -> torch.Tensor:
return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size) |