frankleeeee
commited on
Upload STDiT2
Browse files- config.json +39 -0
- configuration_stdit2.py +51 -0
- layers.py +652 -0
- model.safetensors +3 -0
- modeling_stdit2.py +327 -0
- utils.py +90 -0
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"STDiT2"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_stdit2.STDiT2Config",
|
7 |
+
"AutoModel": "modeling_stdit2.STDiT2"
|
8 |
+
},
|
9 |
+
"caption_channels": 4096,
|
10 |
+
"class_dropout_prob": 0.1,
|
11 |
+
"depth": 28,
|
12 |
+
"drop_path": 0.0,
|
13 |
+
"enable_flash_attn": false,
|
14 |
+
"enable_layernorm_kernel": false,
|
15 |
+
"enable_sequence_parallelism": false,
|
16 |
+
"freeze": null,
|
17 |
+
"hidden_size": 1152,
|
18 |
+
"in_channels": 4,
|
19 |
+
"input_size": [
|
20 |
+
32,
|
21 |
+
60,
|
22 |
+
106
|
23 |
+
],
|
24 |
+
"input_sq_size": 512,
|
25 |
+
"mlp_ratio": 4.0,
|
26 |
+
"model_max_length": 200,
|
27 |
+
"model_type": "stdit2",
|
28 |
+
"no_temporal_pos_emb": false,
|
29 |
+
"num_heads": 16,
|
30 |
+
"patch_size": [
|
31 |
+
1,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"pred_sigma": true,
|
36 |
+
"qk_norm": true,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.40.1"
|
39 |
+
}
|
configuration_stdit2.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class STDiT2Config(PretrainedConfig):
|
6 |
+
|
7 |
+
model_type = "stdit2"
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
input_size=(None, None, None),
|
12 |
+
input_sq_size=32,
|
13 |
+
in_channels=4,
|
14 |
+
patch_size=(1, 2, 2),
|
15 |
+
hidden_size=1152,
|
16 |
+
depth=28,
|
17 |
+
num_heads=16,
|
18 |
+
mlp_ratio=4.0,
|
19 |
+
class_dropout_prob=0.1,
|
20 |
+
pred_sigma=True,
|
21 |
+
drop_path=0.0,
|
22 |
+
no_temporal_pos_emb=False,
|
23 |
+
caption_channels=4096,
|
24 |
+
model_max_length=120,
|
25 |
+
freeze=None,
|
26 |
+
qk_norm=False,
|
27 |
+
enable_flash_attn=False,
|
28 |
+
enable_layernorm_kernel=False,
|
29 |
+
enable_sequence_parallelism=False,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
self.input_size = input_size
|
33 |
+
self.input_sq_size = input_sq_size
|
34 |
+
self.in_channels = in_channels
|
35 |
+
self.patch_size = patch_size
|
36 |
+
self.hidden_size = hidden_size
|
37 |
+
self.depth = depth
|
38 |
+
self.num_heads = num_heads
|
39 |
+
self.mlp_ratio = mlp_ratio
|
40 |
+
self.class_dropout_prob = class_dropout_prob
|
41 |
+
self.pred_sigma = pred_sigma
|
42 |
+
self.drop_path = drop_path
|
43 |
+
self.no_temporal_pos_emb = no_temporal_pos_emb
|
44 |
+
self.caption_channels = caption_channels
|
45 |
+
self.model_max_length = model_max_length
|
46 |
+
self.freeze = freeze
|
47 |
+
self.qk_norm = qk_norm
|
48 |
+
self.enable_flash_attn = enable_flash_attn
|
49 |
+
self.enable_layernorm_kernel = enable_layernorm_kernel
|
50 |
+
self.enable_sequence_parallelism = enable_sequence_parallelism
|
51 |
+
super().__init__(**kwargs)
|
layers.py
ADDED
@@ -0,0 +1,652 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import collections.abc
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import functools
|
8 |
+
|
9 |
+
from einops import rearrange
|
10 |
+
from itertools import repeat
|
11 |
+
from functools import partial
|
12 |
+
from .utils import approx_gelu, get_layernorm, t2i_modulate
|
13 |
+
from typing import Optional
|
14 |
+
|
15 |
+
|
16 |
+
try:
|
17 |
+
import xformers
|
18 |
+
HAS_XFORMERS = True
|
19 |
+
except:
|
20 |
+
HAS_XFORMERS = False
|
21 |
+
|
22 |
+
|
23 |
+
# =================
|
24 |
+
# STDiT2Block
|
25 |
+
# =================
|
26 |
+
class STDiT2Block(nn.Module):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
hidden_size,
|
30 |
+
num_heads,
|
31 |
+
mlp_ratio=4.0,
|
32 |
+
drop_path=0.0,
|
33 |
+
enable_flash_attn=False,
|
34 |
+
enable_layernorm_kernel=False,
|
35 |
+
enable_sequence_parallelism=False,
|
36 |
+
rope=None,
|
37 |
+
qk_norm=False,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.enable_flash_attn = enable_flash_attn
|
42 |
+
self._enable_sequence_parallelism = enable_sequence_parallelism
|
43 |
+
|
44 |
+
assert not self._enable_sequence_parallelism, "Sequence parallelism is not supported."
|
45 |
+
if enable_sequence_parallelism:
|
46 |
+
self.attn_cls = SeqParallelAttention
|
47 |
+
self.mha_cls = SeqParallelMultiHeadCrossAttention
|
48 |
+
else:
|
49 |
+
self.attn_cls = Attention
|
50 |
+
self.mha_cls = MultiHeadCrossAttention
|
51 |
+
|
52 |
+
# spatial branch
|
53 |
+
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
|
54 |
+
self.attn = self.attn_cls(
|
55 |
+
hidden_size,
|
56 |
+
num_heads=num_heads,
|
57 |
+
qkv_bias=True,
|
58 |
+
enable_flash_attn=enable_flash_attn,
|
59 |
+
qk_norm=qk_norm,
|
60 |
+
)
|
61 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
|
62 |
+
|
63 |
+
# cross attn
|
64 |
+
self.cross_attn = self.mha_cls(hidden_size, num_heads)
|
65 |
+
|
66 |
+
# mlp branch
|
67 |
+
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
|
68 |
+
self.mlp = Mlp(
|
69 |
+
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
|
70 |
+
)
|
71 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
72 |
+
|
73 |
+
# temporal branch
|
74 |
+
self.norm_temp = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) # new
|
75 |
+
self.attn_temp = self.attn_cls(
|
76 |
+
hidden_size,
|
77 |
+
num_heads=num_heads,
|
78 |
+
qkv_bias=True,
|
79 |
+
enable_flash_attn=self.enable_flash_attn,
|
80 |
+
rope=rope,
|
81 |
+
qk_norm=qk_norm,
|
82 |
+
)
|
83 |
+
self.scale_shift_table_temporal = nn.Parameter(torch.randn(3, hidden_size) / hidden_size**0.5) # new
|
84 |
+
|
85 |
+
def t_mask_select(self, x_mask, x, masked_x, T, S):
|
86 |
+
# x: [B, (T, S), C]
|
87 |
+
# mased_x: [B, (T, S), C]
|
88 |
+
# x_mask: [B, T]
|
89 |
+
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
|
90 |
+
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
|
91 |
+
x = torch.where(x_mask[:, :, None, None], x, masked_x)
|
92 |
+
x = rearrange(x, "B T S C -> B (T S) C")
|
93 |
+
return x
|
94 |
+
|
95 |
+
def forward(self, x, y, t, t_tmp, mask=None, x_mask=None, t0=None, t0_tmp=None, T=None, S=None):
|
96 |
+
B, N, C = x.shape
|
97 |
+
|
98 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
99 |
+
self.scale_shift_table[None] + t.reshape(B, 6, -1)
|
100 |
+
).chunk(6, dim=1)
|
101 |
+
shift_tmp, scale_tmp, gate_tmp = (self.scale_shift_table_temporal[None] + t_tmp.reshape(B, 3, -1)).chunk(
|
102 |
+
3, dim=1
|
103 |
+
)
|
104 |
+
if x_mask is not None:
|
105 |
+
shift_msa_zero, scale_msa_zero, gate_msa_zero, shift_mlp_zero, scale_mlp_zero, gate_mlp_zero = (
|
106 |
+
self.scale_shift_table[None] + t0.reshape(B, 6, -1)
|
107 |
+
).chunk(6, dim=1)
|
108 |
+
shift_tmp_zero, scale_tmp_zero, gate_tmp_zero = (
|
109 |
+
self.scale_shift_table_temporal[None] + t0_tmp.reshape(B, 3, -1)
|
110 |
+
).chunk(3, dim=1)
|
111 |
+
|
112 |
+
# modulate
|
113 |
+
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa)
|
114 |
+
if x_mask is not None:
|
115 |
+
x_m_zero = t2i_modulate(self.norm1(x), shift_msa_zero, scale_msa_zero)
|
116 |
+
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)
|
117 |
+
|
118 |
+
# spatial branch
|
119 |
+
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=T, S=S)
|
120 |
+
x_s = self.attn(x_s)
|
121 |
+
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=T, S=S)
|
122 |
+
if x_mask is not None:
|
123 |
+
x_s_zero = gate_msa_zero * x_s
|
124 |
+
x_s = gate_msa * x_s
|
125 |
+
x_s = self.t_mask_select(x_mask, x_s, x_s_zero, T, S)
|
126 |
+
else:
|
127 |
+
x_s = gate_msa * x_s
|
128 |
+
x = x + self.drop_path(x_s)
|
129 |
+
|
130 |
+
# modulate
|
131 |
+
x_m = t2i_modulate(self.norm_temp(x), shift_tmp, scale_tmp)
|
132 |
+
if x_mask is not None:
|
133 |
+
x_m_zero = t2i_modulate(self.norm_temp(x), shift_tmp_zero, scale_tmp_zero)
|
134 |
+
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)
|
135 |
+
|
136 |
+
# temporal branch
|
137 |
+
x_t = rearrange(x_m, "B (T S) C -> (B S) T C", T=T, S=S)
|
138 |
+
x_t = self.attn_temp(x_t)
|
139 |
+
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=T, S=S)
|
140 |
+
if x_mask is not None:
|
141 |
+
x_t_zero = gate_tmp_zero * x_t
|
142 |
+
x_t = gate_tmp * x_t
|
143 |
+
x_t = self.t_mask_select(x_mask, x_t, x_t_zero, T, S)
|
144 |
+
else:
|
145 |
+
x_t = gate_tmp * x_t
|
146 |
+
x = x + self.drop_path(x_t)
|
147 |
+
|
148 |
+
# cross attn
|
149 |
+
x = x + self.cross_attn(x, y, mask)
|
150 |
+
|
151 |
+
# modulate
|
152 |
+
x_m = t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)
|
153 |
+
if x_mask is not None:
|
154 |
+
x_m_zero = t2i_modulate(self.norm2(x), shift_mlp_zero, scale_mlp_zero)
|
155 |
+
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)
|
156 |
+
|
157 |
+
# mlp
|
158 |
+
x_mlp = self.mlp(x_m)
|
159 |
+
if x_mask is not None:
|
160 |
+
x_mlp_zero = gate_mlp_zero * x_mlp
|
161 |
+
x_mlp = gate_mlp * x_mlp
|
162 |
+
x_mlp = self.t_mask_select(x_mask, x_mlp, x_mlp_zero, T, S)
|
163 |
+
else:
|
164 |
+
x_mlp = gate_mlp * x_mlp
|
165 |
+
x = x + self.drop_path(x_mlp)
|
166 |
+
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
# =================
|
171 |
+
# Attention
|
172 |
+
# =================
|
173 |
+
class LlamaRMSNorm(nn.Module):
|
174 |
+
def __init__(self, hidden_size, eps=1e-6):
|
175 |
+
"""
|
176 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
177 |
+
"""
|
178 |
+
super().__init__()
|
179 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
180 |
+
self.variance_epsilon = eps
|
181 |
+
|
182 |
+
def forward(self, hidden_states):
|
183 |
+
input_dtype = hidden_states.dtype
|
184 |
+
hidden_states = hidden_states.to(torch.float32)
|
185 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
186 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
187 |
+
return self.weight * hidden_states.to(input_dtype)
|
188 |
+
|
189 |
+
class Attention(nn.Module):
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
dim: int,
|
193 |
+
num_heads: int = 8,
|
194 |
+
qkv_bias: bool = False,
|
195 |
+
qk_norm: bool = False,
|
196 |
+
attn_drop: float = 0.0,
|
197 |
+
proj_drop: float = 0.0,
|
198 |
+
norm_layer: nn.Module = LlamaRMSNorm,
|
199 |
+
enable_flash_attn: bool = False,
|
200 |
+
rope=None,
|
201 |
+
) -> None:
|
202 |
+
super().__init__()
|
203 |
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
204 |
+
self.dim = dim
|
205 |
+
self.num_heads = num_heads
|
206 |
+
self.head_dim = dim // num_heads
|
207 |
+
self.scale = self.head_dim**-0.5
|
208 |
+
self.enable_flash_attn = enable_flash_attn
|
209 |
+
|
210 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
211 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
212 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
213 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
214 |
+
self.proj = nn.Linear(dim, dim)
|
215 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
216 |
+
|
217 |
+
self.rope = False
|
218 |
+
if rope is not None:
|
219 |
+
self.rope = True
|
220 |
+
self.rotary_emb = rope
|
221 |
+
|
222 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
223 |
+
B, N, C = x.shape
|
224 |
+
# flash attn is not memory efficient for small sequences, this is empirical
|
225 |
+
enable_flash_attn = self.enable_flash_attn and (N > B)
|
226 |
+
qkv = self.qkv(x)
|
227 |
+
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
|
228 |
+
|
229 |
+
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4)
|
230 |
+
q, k, v = qkv.unbind(0)
|
231 |
+
if self.rope:
|
232 |
+
q = self.rotary_emb(q)
|
233 |
+
k = self.rotary_emb(k)
|
234 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
235 |
+
|
236 |
+
if enable_flash_attn:
|
237 |
+
from flash_attn import flash_attn_func
|
238 |
+
|
239 |
+
# (B, #heads, N, #dim) -> (B, N, #heads, #dim)
|
240 |
+
q = q.permute(0, 2, 1, 3)
|
241 |
+
k = k.permute(0, 2, 1, 3)
|
242 |
+
v = v.permute(0, 2, 1, 3)
|
243 |
+
x = flash_attn_func(
|
244 |
+
q,
|
245 |
+
k,
|
246 |
+
v,
|
247 |
+
dropout_p=self.attn_drop.p if self.training else 0.0,
|
248 |
+
softmax_scale=self.scale,
|
249 |
+
)
|
250 |
+
else:
|
251 |
+
dtype = q.dtype
|
252 |
+
q = q * self.scale
|
253 |
+
attn = q @ k.transpose(-2, -1) # translate attn to float32
|
254 |
+
attn = attn.to(torch.float32)
|
255 |
+
attn = attn.softmax(dim=-1)
|
256 |
+
attn = attn.to(dtype) # cast back attn to original dtype
|
257 |
+
attn = self.attn_drop(attn)
|
258 |
+
x = attn @ v
|
259 |
+
|
260 |
+
x_output_shape = (B, N, C)
|
261 |
+
if not enable_flash_attn:
|
262 |
+
x = x.transpose(1, 2)
|
263 |
+
x = x.reshape(x_output_shape)
|
264 |
+
x = self.proj(x)
|
265 |
+
x = self.proj_drop(x)
|
266 |
+
return x
|
267 |
+
|
268 |
+
|
269 |
+
# ========================
|
270 |
+
# MultiHeadCrossAttention
|
271 |
+
# ========================
|
272 |
+
class MultiHeadCrossAttention(nn.Module):
|
273 |
+
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
|
274 |
+
super(MultiHeadCrossAttention, self).__init__()
|
275 |
+
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
276 |
+
|
277 |
+
self.d_model = d_model
|
278 |
+
self.num_heads = num_heads
|
279 |
+
self.head_dim = d_model // num_heads
|
280 |
+
|
281 |
+
self.q_linear = nn.Linear(d_model, d_model)
|
282 |
+
self.kv_linear = nn.Linear(d_model, d_model * 2)
|
283 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
284 |
+
self.proj = nn.Linear(d_model, d_model)
|
285 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
286 |
+
|
287 |
+
def forward(self, x, cond, mask=None):
|
288 |
+
# query/value: img tokens; key: condition; mask: if padding tokens
|
289 |
+
B, N, C = x.shape
|
290 |
+
|
291 |
+
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
|
292 |
+
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
|
293 |
+
k, v = kv.unbind(2)
|
294 |
+
|
295 |
+
attn_bias = None
|
296 |
+
if mask is not None:
|
297 |
+
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
|
298 |
+
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
|
299 |
+
|
300 |
+
x = x.view(B, -1, C)
|
301 |
+
x = self.proj(x)
|
302 |
+
x = self.proj_drop(x)
|
303 |
+
return x
|
304 |
+
|
305 |
+
|
306 |
+
# =================
|
307 |
+
# Timm Components
|
308 |
+
# =================
|
309 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
310 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
311 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
312 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
313 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
314 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
315 |
+
'survival rate' as the argument.
|
316 |
+
"""
|
317 |
+
if drop_prob == 0. or not training:
|
318 |
+
return x
|
319 |
+
keep_prob = 1 - drop_prob
|
320 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
321 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
322 |
+
if keep_prob > 0.0 and scale_by_keep:
|
323 |
+
random_tensor.div_(keep_prob)
|
324 |
+
return x * random_tensor
|
325 |
+
|
326 |
+
class DropPath(nn.Module):
|
327 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
328 |
+
"""
|
329 |
+
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
|
330 |
+
super(DropPath, self).__init__()
|
331 |
+
self.drop_prob = drop_prob
|
332 |
+
self.scale_by_keep = scale_by_keep
|
333 |
+
|
334 |
+
def forward(self, x):
|
335 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
336 |
+
|
337 |
+
def extra_repr(self):
|
338 |
+
return f'drop_prob={round(self.drop_prob,3):0.3f}'
|
339 |
+
|
340 |
+
def _ntuple(n):
|
341 |
+
def parse(x):
|
342 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
343 |
+
return tuple(x)
|
344 |
+
return tuple(repeat(x, n))
|
345 |
+
return parse
|
346 |
+
|
347 |
+
to_2tuple = _ntuple(2)
|
348 |
+
|
349 |
+
class Mlp(nn.Module):
|
350 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
351 |
+
"""
|
352 |
+
def __init__(
|
353 |
+
self,
|
354 |
+
in_features,
|
355 |
+
hidden_features=None,
|
356 |
+
out_features=None,
|
357 |
+
act_layer=nn.GELU,
|
358 |
+
norm_layer=None,
|
359 |
+
bias=True,
|
360 |
+
drop=0.,
|
361 |
+
use_conv=False,
|
362 |
+
):
|
363 |
+
super().__init__()
|
364 |
+
out_features = out_features or in_features
|
365 |
+
hidden_features = hidden_features or in_features
|
366 |
+
bias = to_2tuple(bias)
|
367 |
+
drop_probs = to_2tuple(drop)
|
368 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
369 |
+
|
370 |
+
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
371 |
+
self.act = act_layer()
|
372 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
373 |
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
374 |
+
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
|
375 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
376 |
+
|
377 |
+
def forward(self, x):
|
378 |
+
x = self.fc1(x)
|
379 |
+
x = self.act(x)
|
380 |
+
x = self.drop1(x)
|
381 |
+
x = self.norm(x)
|
382 |
+
x = self.fc2(x)
|
383 |
+
x = self.drop2(x)
|
384 |
+
return x
|
385 |
+
|
386 |
+
|
387 |
+
# =================
|
388 |
+
# Embedding
|
389 |
+
# =================
|
390 |
+
class CaptionEmbedder(nn.Module):
|
391 |
+
"""
|
392 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(
|
396 |
+
self,
|
397 |
+
in_channels,
|
398 |
+
hidden_size,
|
399 |
+
uncond_prob,
|
400 |
+
act_layer=nn.GELU(approximate="tanh"),
|
401 |
+
token_num=120,
|
402 |
+
):
|
403 |
+
super().__init__()
|
404 |
+
self.y_proj = Mlp(
|
405 |
+
in_features=in_channels,
|
406 |
+
hidden_features=hidden_size,
|
407 |
+
out_features=hidden_size,
|
408 |
+
act_layer=act_layer,
|
409 |
+
drop=0,
|
410 |
+
)
|
411 |
+
self.register_buffer(
|
412 |
+
"y_embedding",
|
413 |
+
torch.randn(token_num, in_channels) / in_channels**0.5,
|
414 |
+
)
|
415 |
+
self.uncond_prob = uncond_prob
|
416 |
+
|
417 |
+
def token_drop(self, caption, force_drop_ids=None):
|
418 |
+
"""
|
419 |
+
Drops labels to enable classifier-free guidance.
|
420 |
+
"""
|
421 |
+
if force_drop_ids is None:
|
422 |
+
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
|
423 |
+
else:
|
424 |
+
drop_ids = force_drop_ids == 1
|
425 |
+
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
|
426 |
+
return caption
|
427 |
+
|
428 |
+
def forward(self, caption, train, force_drop_ids=None):
|
429 |
+
if train:
|
430 |
+
assert caption.shape[2:] == self.y_embedding.shape
|
431 |
+
use_dropout = self.uncond_prob > 0
|
432 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
433 |
+
caption = self.token_drop(caption, force_drop_ids)
|
434 |
+
caption = self.y_proj(caption)
|
435 |
+
return caption
|
436 |
+
|
437 |
+
|
438 |
+
class PatchEmbed3D(nn.Module):
|
439 |
+
"""Video to Patch Embedding.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
patch_size (int): Patch token size. Default: (2,4,4).
|
443 |
+
in_chans (int): Number of input video channels. Default: 3.
|
444 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
445 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
446 |
+
"""
|
447 |
+
|
448 |
+
def __init__(
|
449 |
+
self,
|
450 |
+
patch_size=(2, 4, 4),
|
451 |
+
in_chans=3,
|
452 |
+
embed_dim=96,
|
453 |
+
norm_layer=None,
|
454 |
+
flatten=True,
|
455 |
+
):
|
456 |
+
super().__init__()
|
457 |
+
self.patch_size = patch_size
|
458 |
+
self.flatten = flatten
|
459 |
+
|
460 |
+
self.in_chans = in_chans
|
461 |
+
self.embed_dim = embed_dim
|
462 |
+
|
463 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
464 |
+
if norm_layer is not None:
|
465 |
+
self.norm = norm_layer(embed_dim)
|
466 |
+
else:
|
467 |
+
self.norm = None
|
468 |
+
|
469 |
+
def forward(self, x):
|
470 |
+
"""Forward function."""
|
471 |
+
# padding
|
472 |
+
_, _, D, H, W = x.size()
|
473 |
+
if W % self.patch_size[2] != 0:
|
474 |
+
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
|
475 |
+
if H % self.patch_size[1] != 0:
|
476 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
|
477 |
+
if D % self.patch_size[0] != 0:
|
478 |
+
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
|
479 |
+
|
480 |
+
x = self.proj(x) # (B C T H W)
|
481 |
+
if self.norm is not None:
|
482 |
+
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
|
483 |
+
x = x.flatten(2).transpose(1, 2)
|
484 |
+
x = self.norm(x)
|
485 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
|
486 |
+
if self.flatten:
|
487 |
+
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC
|
488 |
+
return x
|
489 |
+
|
490 |
+
class T2IFinalLayer(nn.Module):
|
491 |
+
"""
|
492 |
+
The final layer of PixArt.
|
493 |
+
"""
|
494 |
+
|
495 |
+
def __init__(self, hidden_size, num_patch, out_channels, d_t=None, d_s=None):
|
496 |
+
super().__init__()
|
497 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
498 |
+
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
|
499 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
|
500 |
+
self.out_channels = out_channels
|
501 |
+
self.d_t = d_t
|
502 |
+
self.d_s = d_s
|
503 |
+
|
504 |
+
def t_mask_select(self, x_mask, x, masked_x, T, S):
|
505 |
+
# x: [B, (T, S), C]
|
506 |
+
# mased_x: [B, (T, S), C]
|
507 |
+
# x_mask: [B, T]
|
508 |
+
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
|
509 |
+
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
|
510 |
+
x = torch.where(x_mask[:, :, None, None], x, masked_x)
|
511 |
+
x = rearrange(x, "B T S C -> B (T S) C")
|
512 |
+
return x
|
513 |
+
|
514 |
+
def forward(self, x, t, x_mask=None, t0=None, T=None, S=None):
|
515 |
+
if T is None:
|
516 |
+
T = self.d_t
|
517 |
+
if S is None:
|
518 |
+
S = self.d_s
|
519 |
+
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
|
520 |
+
x = t2i_modulate(self.norm_final(x), shift, scale)
|
521 |
+
if x_mask is not None:
|
522 |
+
shift_zero, scale_zero = (self.scale_shift_table[None] + t0[:, None]).chunk(2, dim=1)
|
523 |
+
x_zero = t2i_modulate(self.norm_final(x), shift_zero, scale_zero)
|
524 |
+
x = self.t_mask_select(x_mask, x, x_zero, T, S)
|
525 |
+
x = self.linear(x)
|
526 |
+
return x
|
527 |
+
|
528 |
+
class TimestepEmbedder(nn.Module):
|
529 |
+
"""
|
530 |
+
Embeds scalar timesteps into vector representations.
|
531 |
+
"""
|
532 |
+
|
533 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
534 |
+
super().__init__()
|
535 |
+
self.mlp = nn.Sequential(
|
536 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
537 |
+
nn.SiLU(),
|
538 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
539 |
+
)
|
540 |
+
self.frequency_embedding_size = frequency_embedding_size
|
541 |
+
|
542 |
+
@staticmethod
|
543 |
+
def timestep_embedding(t, dim, max_period=10000):
|
544 |
+
"""
|
545 |
+
Create sinusoidal timestep embeddings.
|
546 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
547 |
+
These may be fractional.
|
548 |
+
:param dim: the dimension of the output.
|
549 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
550 |
+
:return: an (N, D) Tensor of positional embeddings.
|
551 |
+
"""
|
552 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
553 |
+
half = dim // 2
|
554 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
|
555 |
+
freqs = freqs.to(device=t.device)
|
556 |
+
args = t[:, None].float() * freqs[None]
|
557 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
558 |
+
if dim % 2:
|
559 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
560 |
+
return embedding
|
561 |
+
|
562 |
+
def forward(self, t, dtype):
|
563 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
564 |
+
if t_freq.dtype != dtype:
|
565 |
+
t_freq = t_freq.to(dtype)
|
566 |
+
t_emb = self.mlp(t_freq)
|
567 |
+
return t_emb
|
568 |
+
|
569 |
+
class SizeEmbedder(TimestepEmbedder):
|
570 |
+
"""
|
571 |
+
Embeds scalar timesteps into vector representations.
|
572 |
+
"""
|
573 |
+
|
574 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
575 |
+
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
|
576 |
+
self.mlp = nn.Sequential(
|
577 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
578 |
+
nn.SiLU(),
|
579 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
580 |
+
)
|
581 |
+
self.frequency_embedding_size = frequency_embedding_size
|
582 |
+
self.outdim = hidden_size
|
583 |
+
|
584 |
+
def forward(self, s, bs):
|
585 |
+
if s.ndim == 1:
|
586 |
+
s = s[:, None]
|
587 |
+
assert s.ndim == 2
|
588 |
+
if s.shape[0] != bs:
|
589 |
+
s = s.repeat(bs // s.shape[0], 1)
|
590 |
+
assert s.shape[0] == bs
|
591 |
+
b, dims = s.shape[0], s.shape[1]
|
592 |
+
s = rearrange(s, "b d -> (b d)")
|
593 |
+
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
|
594 |
+
s_emb = self.mlp(s_freq)
|
595 |
+
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
|
596 |
+
return s_emb
|
597 |
+
|
598 |
+
@property
|
599 |
+
def dtype(self):
|
600 |
+
return next(self.parameters()).dtype
|
601 |
+
|
602 |
+
|
603 |
+
class PositionEmbedding2D(nn.Module):
|
604 |
+
def __init__(self, dim: int) -> None:
|
605 |
+
super().__init__()
|
606 |
+
self.dim = dim
|
607 |
+
assert dim % 4 == 0, "dim must be divisible by 4"
|
608 |
+
half_dim = dim // 2
|
609 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim))
|
610 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
611 |
+
|
612 |
+
def _get_sin_cos_emb(self, t: torch.Tensor):
|
613 |
+
out = torch.einsum("i,d->id", t, self.inv_freq)
|
614 |
+
emb_cos = torch.cos(out)
|
615 |
+
emb_sin = torch.sin(out)
|
616 |
+
return torch.cat((emb_sin, emb_cos), dim=-1)
|
617 |
+
|
618 |
+
@functools.lru_cache(maxsize=512)
|
619 |
+
def _get_cached_emb(
|
620 |
+
self,
|
621 |
+
device: torch.device,
|
622 |
+
dtype: torch.dtype,
|
623 |
+
h: int,
|
624 |
+
w: int,
|
625 |
+
scale: float = 1.0,
|
626 |
+
base_size: Optional[int] = None,
|
627 |
+
):
|
628 |
+
grid_h = torch.arange(h, device=device) / scale
|
629 |
+
grid_w = torch.arange(w, device=device) / scale
|
630 |
+
if base_size is not None:
|
631 |
+
grid_h *= base_size / h
|
632 |
+
grid_w *= base_size / w
|
633 |
+
grid_h, grid_w = torch.meshgrid(
|
634 |
+
grid_w,
|
635 |
+
grid_h,
|
636 |
+
indexing="ij",
|
637 |
+
) # here w goes first
|
638 |
+
grid_h = grid_h.t().reshape(-1)
|
639 |
+
grid_w = grid_w.t().reshape(-1)
|
640 |
+
emb_h = self._get_sin_cos_emb(grid_h)
|
641 |
+
emb_w = self._get_sin_cos_emb(grid_w)
|
642 |
+
return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype)
|
643 |
+
|
644 |
+
def forward(
|
645 |
+
self,
|
646 |
+
x: torch.Tensor,
|
647 |
+
h: int,
|
648 |
+
w: int,
|
649 |
+
scale: Optional[float] = 1.0,
|
650 |
+
base_size: Optional[int] = None,
|
651 |
+
) -> torch.Tensor:
|
652 |
+
return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdad242e56f14c963e22c601fafcd19af4529f6d509bdba8e3088c615a30f60f
|
3 |
+
size 3073157592
|
modeling_stdit2.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
+
from .configuration_stdit2 import STDiT2Config
|
7 |
+
from .layers import (
|
8 |
+
STDiT2Block,
|
9 |
+
CaptionEmbedder,
|
10 |
+
PatchEmbed3D,
|
11 |
+
T2IFinalLayer,
|
12 |
+
TimestepEmbedder,
|
13 |
+
SizeEmbedder,
|
14 |
+
PositionEmbedding2D
|
15 |
+
)
|
16 |
+
from rotary_embedding_torch import RotaryEmbedding
|
17 |
+
from .utils import (
|
18 |
+
get_2d_sincos_pos_embed,
|
19 |
+
approx_gelu
|
20 |
+
)
|
21 |
+
from transformers import PreTrainedModel
|
22 |
+
|
23 |
+
|
24 |
+
class STDiT2(PreTrainedModel):
|
25 |
+
|
26 |
+
config_class = STDiT2Config
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
config: STDiT2Config
|
31 |
+
):
|
32 |
+
super().__init__(config)
|
33 |
+
self.pred_sigma = config.pred_sigma
|
34 |
+
self.in_channels = config.in_channels
|
35 |
+
self.out_channels = config.in_channels * 2 if config.pred_sigma else config.in_channels
|
36 |
+
self.hidden_size = config.hidden_size
|
37 |
+
self.num_heads = config.num_heads
|
38 |
+
self.no_temporal_pos_emb = config.no_temporal_pos_emb
|
39 |
+
self.depth = config.depth
|
40 |
+
self.mlp_ratio = config.mlp_ratio
|
41 |
+
self.enable_flash_attn = config.enable_flash_attn
|
42 |
+
self.enable_layernorm_kernel = config.enable_layernorm_kernel
|
43 |
+
self.enable_sequence_parallelism = config.enable_sequence_parallelism
|
44 |
+
|
45 |
+
# support dynamic input
|
46 |
+
self.patch_size = config.patch_size
|
47 |
+
self.input_size = config.input_size
|
48 |
+
self.input_sq_size = config.input_sq_size
|
49 |
+
self.pos_embed = PositionEmbedding2D(config.hidden_size)
|
50 |
+
|
51 |
+
self.x_embedder = PatchEmbed3D(config.patch_size, config.in_channels, config.hidden_size)
|
52 |
+
self.t_embedder = TimestepEmbedder(config.hidden_size)
|
53 |
+
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True))
|
54 |
+
self.t_block_temp = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=True)) # new
|
55 |
+
self.y_embedder = CaptionEmbedder(
|
56 |
+
in_channels=config.caption_channels,
|
57 |
+
hidden_size=config.hidden_size,
|
58 |
+
uncond_prob=config.class_dropout_prob,
|
59 |
+
act_layer=approx_gelu,
|
60 |
+
token_num=config.model_max_length,
|
61 |
+
)
|
62 |
+
|
63 |
+
drop_path = [x.item() for x in torch.linspace(0, config.drop_path, config.depth)]
|
64 |
+
self.rope = RotaryEmbedding(dim=self.hidden_size // self.num_heads) # new
|
65 |
+
self.blocks = nn.ModuleList(
|
66 |
+
[
|
67 |
+
STDiT2Block(
|
68 |
+
self.hidden_size,
|
69 |
+
self.num_heads,
|
70 |
+
mlp_ratio=self.mlp_ratio,
|
71 |
+
drop_path=drop_path[i],
|
72 |
+
enable_flash_attn=self.enable_flash_attn,
|
73 |
+
enable_layernorm_kernel=self.enable_layernorm_kernel,
|
74 |
+
enable_sequence_parallelism=self.enable_sequence_parallelism,
|
75 |
+
rope=self.rope.rotate_queries_or_keys,
|
76 |
+
qk_norm=config.qk_norm,
|
77 |
+
)
|
78 |
+
for i in range(self.depth)
|
79 |
+
]
|
80 |
+
)
|
81 |
+
self.final_layer = T2IFinalLayer(config.hidden_size, np.prod(self.patch_size), self.out_channels)
|
82 |
+
|
83 |
+
# multi_res
|
84 |
+
assert self.hidden_size % 3 == 0, "hidden_size must be divisible by 3"
|
85 |
+
self.csize_embedder = SizeEmbedder(self.hidden_size // 3)
|
86 |
+
self.ar_embedder = SizeEmbedder(self.hidden_size // 3)
|
87 |
+
self.fl_embedder = SizeEmbedder(self.hidden_size) # new
|
88 |
+
self.fps_embedder = SizeEmbedder(self.hidden_size) # new
|
89 |
+
|
90 |
+
# init model
|
91 |
+
self.initialize_weights()
|
92 |
+
self.initialize_temporal()
|
93 |
+
if config.freeze is not None:
|
94 |
+
assert config.freeze in ["not_temporal", "text"]
|
95 |
+
if config.freeze == "not_temporal":
|
96 |
+
self.freeze_not_temporal()
|
97 |
+
elif config.freeze == "text":
|
98 |
+
self.freeze_text()
|
99 |
+
|
100 |
+
# sequence parallel related configs
|
101 |
+
if self.enable_sequence_parallelism:
|
102 |
+
self.sp_rank = dist.get_rank(get_sequence_parallel_group())
|
103 |
+
else:
|
104 |
+
self.sp_rank = None
|
105 |
+
|
106 |
+
def get_dynamic_size(self, x):
|
107 |
+
_, _, T, H, W = x.size()
|
108 |
+
if T % self.patch_size[0] != 0:
|
109 |
+
T += self.patch_size[0] - T % self.patch_size[0]
|
110 |
+
if H % self.patch_size[1] != 0:
|
111 |
+
H += self.patch_size[1] - H % self.patch_size[1]
|
112 |
+
if W % self.patch_size[2] != 0:
|
113 |
+
W += self.patch_size[2] - W % self.patch_size[2]
|
114 |
+
T = T // self.patch_size[0]
|
115 |
+
H = H // self.patch_size[1]
|
116 |
+
W = W // self.patch_size[2]
|
117 |
+
return (T, H, W)
|
118 |
+
|
119 |
+
def forward(
|
120 |
+
self, x, timestep, y, mask=None, x_mask=None, num_frames=None, height=None, width=None, ar=None, fps=None
|
121 |
+
):
|
122 |
+
"""
|
123 |
+
Forward pass of STDiT.
|
124 |
+
Args:
|
125 |
+
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W]
|
126 |
+
timestep (torch.Tensor): diffusion time steps; of shape [B]
|
127 |
+
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C]
|
128 |
+
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token]
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W]
|
132 |
+
"""
|
133 |
+
B = x.shape[0]
|
134 |
+
x = x.to(self.final_layer.linear.weight.dtype)
|
135 |
+
timestep = timestep.to(self.final_layer.linear.weight.dtype)
|
136 |
+
y = y.to(self.final_layer.linear.weight.dtype)
|
137 |
+
|
138 |
+
|
139 |
+
# === process data info ===
|
140 |
+
# 1. get dynamic size
|
141 |
+
hw = torch.cat([height[:, None], width[:, None]], dim=1)
|
142 |
+
rs = (height[0].item() * width[0].item()) ** 0.5
|
143 |
+
csize = self.csize_embedder(hw, B)
|
144 |
+
|
145 |
+
# 2. get aspect ratio
|
146 |
+
ar = ar.unsqueeze(1)
|
147 |
+
ar = self.ar_embedder(ar, B)
|
148 |
+
data_info = torch.cat([csize, ar], dim=1)
|
149 |
+
|
150 |
+
# 3. get number of frames
|
151 |
+
fl = num_frames.unsqueeze(1)
|
152 |
+
fps = fps.unsqueeze(1)
|
153 |
+
fl = self.fl_embedder(fl, B)
|
154 |
+
fl = fl + self.fps_embedder(fps, B)
|
155 |
+
|
156 |
+
# === get dynamic shape size ===
|
157 |
+
_, _, Tx, Hx, Wx = x.size()
|
158 |
+
T, H, W = self.get_dynamic_size(x)
|
159 |
+
S = H * W
|
160 |
+
scale = rs / self.input_sq_size
|
161 |
+
base_size = round(S**0.5)
|
162 |
+
pos_emb = self.pos_embed(x, H, W, scale=scale, base_size=base_size)
|
163 |
+
|
164 |
+
# embedding
|
165 |
+
x = self.x_embedder(x) # [B, N, C]
|
166 |
+
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
|
167 |
+
x = x + pos_emb
|
168 |
+
x = rearrange(x, "B T S C -> B (T S) C")
|
169 |
+
|
170 |
+
# shard over the sequence dim if sp is enabled
|
171 |
+
if self.enable_sequence_parallelism:
|
172 |
+
x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down")
|
173 |
+
|
174 |
+
# prepare adaIN
|
175 |
+
t = self.t_embedder(timestep, dtype=x.dtype) # [B, C]
|
176 |
+
t_spc = t + data_info # [B, C]
|
177 |
+
t_tmp = t + fl # [B, C]
|
178 |
+
t_spc_mlp = self.t_block(t_spc) # [B, 6*C]
|
179 |
+
t_tmp_mlp = self.t_block_temp(t_tmp) # [B, 3*C]
|
180 |
+
if x_mask is not None:
|
181 |
+
t0_timestep = torch.zeros_like(timestep)
|
182 |
+
t0 = self.t_embedder(t0_timestep, dtype=x.dtype)
|
183 |
+
t0_spc = t0 + data_info
|
184 |
+
t0_tmp = t0 + fl
|
185 |
+
t0_spc_mlp = self.t_block(t0_spc)
|
186 |
+
t0_tmp_mlp = self.t_block_temp(t0_tmp)
|
187 |
+
else:
|
188 |
+
t0_spc = None
|
189 |
+
t0_tmp = None
|
190 |
+
t0_spc_mlp = None
|
191 |
+
t0_tmp_mlp = None
|
192 |
+
|
193 |
+
# prepare y
|
194 |
+
y = self.y_embedder(y, self.training) # [B, 1, N_token, C]
|
195 |
+
|
196 |
+
if mask is not None:
|
197 |
+
if mask.shape[0] != y.shape[0]:
|
198 |
+
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
199 |
+
mask = mask.squeeze(1).squeeze(1)
|
200 |
+
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
|
201 |
+
y_lens = mask.sum(dim=1).tolist()
|
202 |
+
else:
|
203 |
+
y_lens = [y.shape[2]] * y.shape[0]
|
204 |
+
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
205 |
+
|
206 |
+
# blocks
|
207 |
+
for _, block in enumerate(self.blocks):
|
208 |
+
x = block(
|
209 |
+
x,
|
210 |
+
y,
|
211 |
+
t_spc_mlp,
|
212 |
+
t_tmp_mlp,
|
213 |
+
y_lens,
|
214 |
+
x_mask,
|
215 |
+
t0_spc_mlp,
|
216 |
+
t0_tmp_mlp,
|
217 |
+
T,
|
218 |
+
S,
|
219 |
+
)
|
220 |
+
|
221 |
+
if self.enable_sequence_parallelism:
|
222 |
+
x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up")
|
223 |
+
# x.shape: [B, N, C]
|
224 |
+
|
225 |
+
# final process
|
226 |
+
x = self.final_layer(x, t, x_mask, t0_spc, T, S) # [B, N, C=T_p * H_p * W_p * C_out]
|
227 |
+
x = self.unpatchify(x, T, H, W, Tx, Hx, Wx) # [B, C_out, T, H, W]
|
228 |
+
|
229 |
+
# cast to float32 for better accuracy
|
230 |
+
x = x.to(torch.float32)
|
231 |
+
return x
|
232 |
+
|
233 |
+
def unpatchify(self, x, N_t, N_h, N_w, R_t, R_h, R_w):
|
234 |
+
"""
|
235 |
+
Args:
|
236 |
+
x (torch.Tensor): of shape [B, N, C]
|
237 |
+
|
238 |
+
Return:
|
239 |
+
x (torch.Tensor): of shape [B, C_out, T, H, W]
|
240 |
+
"""
|
241 |
+
|
242 |
+
# N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
|
243 |
+
T_p, H_p, W_p = self.patch_size
|
244 |
+
x = rearrange(
|
245 |
+
x,
|
246 |
+
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)",
|
247 |
+
N_t=N_t,
|
248 |
+
N_h=N_h,
|
249 |
+
N_w=N_w,
|
250 |
+
T_p=T_p,
|
251 |
+
H_p=H_p,
|
252 |
+
W_p=W_p,
|
253 |
+
C_out=self.out_channels,
|
254 |
+
)
|
255 |
+
# unpad
|
256 |
+
x = x[:, :, :R_t, :R_h, :R_w]
|
257 |
+
return x
|
258 |
+
|
259 |
+
def unpatchify_old(self, x):
|
260 |
+
c = self.out_channels
|
261 |
+
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
|
262 |
+
pt, ph, pw = self.patch_size
|
263 |
+
|
264 |
+
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c))
|
265 |
+
x = rearrange(x, "n t h w r p q c -> n c t r h p w q")
|
266 |
+
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
|
267 |
+
return imgs
|
268 |
+
|
269 |
+
def get_spatial_pos_embed(self, H, W, scale=1.0, base_size=None):
|
270 |
+
pos_embed = get_2d_sincos_pos_embed(
|
271 |
+
self.hidden_size,
|
272 |
+
(H, W),
|
273 |
+
scale=scale,
|
274 |
+
base_size=base_size,
|
275 |
+
)
|
276 |
+
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
|
277 |
+
return pos_embed
|
278 |
+
|
279 |
+
def freeze_not_temporal(self):
|
280 |
+
for n, p in self.named_parameters():
|
281 |
+
if "attn_temp" not in n:
|
282 |
+
p.requires_grad = False
|
283 |
+
|
284 |
+
def freeze_text(self):
|
285 |
+
for n, p in self.named_parameters():
|
286 |
+
if "cross_attn" in n:
|
287 |
+
p.requires_grad = False
|
288 |
+
|
289 |
+
def initialize_temporal(self):
|
290 |
+
for block in self.blocks:
|
291 |
+
nn.init.constant_(block.attn_temp.proj.weight, 0)
|
292 |
+
nn.init.constant_(block.attn_temp.proj.bias, 0)
|
293 |
+
|
294 |
+
def initialize_weights(self):
|
295 |
+
# Initialize transformer layers:
|
296 |
+
def _basic_init(module):
|
297 |
+
if isinstance(module, nn.Linear):
|
298 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
299 |
+
if module.bias is not None:
|
300 |
+
nn.init.constant_(module.bias, 0)
|
301 |
+
|
302 |
+
self.apply(_basic_init)
|
303 |
+
|
304 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
305 |
+
w = self.x_embedder.proj.weight.data
|
306 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
307 |
+
|
308 |
+
# Initialize timestep embedding MLP:
|
309 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
310 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
311 |
+
nn.init.normal_(self.t_block[1].weight, std=0.02)
|
312 |
+
nn.init.normal_(self.t_block_temp[1].weight, std=0.02)
|
313 |
+
|
314 |
+
# Initialize caption embedding MLP:
|
315 |
+
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
|
316 |
+
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
|
317 |
+
|
318 |
+
# Zero-out adaLN modulation layers in PixArt blocks:
|
319 |
+
for block in self.blocks:
|
320 |
+
nn.init.constant_(block.cross_attn.proj.weight, 0)
|
321 |
+
nn.init.constant_(block.cross_attn.proj.bias, 0)
|
322 |
+
|
323 |
+
# Zero-out output layers:
|
324 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
325 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
326 |
+
|
327 |
+
|
utils.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
7 |
+
|
8 |
+
|
9 |
+
def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool, use_kernel: bool):
|
10 |
+
if use_kernel:
|
11 |
+
try:
|
12 |
+
from apex.normalization import FusedLayerNorm
|
13 |
+
|
14 |
+
return FusedLayerNorm(hidden_size, elementwise_affine=affine, eps=eps)
|
15 |
+
except ImportError:
|
16 |
+
raise RuntimeError("FusedLayerNorm not available. Please install apex.")
|
17 |
+
else:
|
18 |
+
return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine)
|
19 |
+
|
20 |
+
|
21 |
+
def t2i_modulate(x, shift, scale):
|
22 |
+
return x * (1 + scale) + shift
|
23 |
+
|
24 |
+
|
25 |
+
# ===============================================
|
26 |
+
# Sine/Cosine Positional Embedding Functions
|
27 |
+
# ===============================================
|
28 |
+
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
29 |
+
|
30 |
+
|
31 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None):
|
32 |
+
"""
|
33 |
+
grid_size: int of the grid height and width
|
34 |
+
return:
|
35 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
36 |
+
"""
|
37 |
+
if not isinstance(grid_size, tuple):
|
38 |
+
grid_size = (grid_size, grid_size)
|
39 |
+
|
40 |
+
grid_h = np.arange(grid_size[0], dtype=np.float32) / scale
|
41 |
+
grid_w = np.arange(grid_size[1], dtype=np.float32) / scale
|
42 |
+
if base_size is not None:
|
43 |
+
grid_h *= base_size / grid_size[0]
|
44 |
+
grid_w *= base_size / grid_size[1]
|
45 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
46 |
+
grid = np.stack(grid, axis=0)
|
47 |
+
|
48 |
+
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
|
49 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
50 |
+
if cls_token and extra_tokens > 0:
|
51 |
+
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
52 |
+
return pos_embed
|
53 |
+
|
54 |
+
|
55 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
56 |
+
assert embed_dim % 2 == 0
|
57 |
+
|
58 |
+
# use half of dimensions to encode grid_h
|
59 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
60 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
61 |
+
|
62 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
63 |
+
return emb
|
64 |
+
|
65 |
+
|
66 |
+
def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0):
|
67 |
+
pos = np.arange(0, length)[..., None] / scale
|
68 |
+
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
|
69 |
+
|
70 |
+
|
71 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
72 |
+
"""
|
73 |
+
embed_dim: output dimension for each position
|
74 |
+
pos: a list of positions to be encoded: size (M,)
|
75 |
+
out: (M, D)
|
76 |
+
"""
|
77 |
+
assert embed_dim % 2 == 0
|
78 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
79 |
+
omega /= embed_dim / 2.0
|
80 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
81 |
+
|
82 |
+
pos = pos.reshape(-1) # (M,)
|
83 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
84 |
+
|
85 |
+
emb_sin = np.sin(out) # (M, D/2)
|
86 |
+
emb_cos = np.cos(out) # (M, D/2)
|
87 |
+
|
88 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
89 |
+
return emb
|
90 |
+
|