File size: 13,706 Bytes
cdad258 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcebdb01870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcebdb01900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcebdb01990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcebdb01a20>", "_build": "<function ActorCriticPolicy._build at 0x7fcebdb01ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcebdb01b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcebdb01bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcebdb01c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcebdb01cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcebdb01d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcebdb01e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcebdb01ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcebdaf2c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692411206074673011, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2OZL2ciaI+zgY8PU6xor5x99c8Oo4lvQAAAAAAAAAAZg/hPEtn8j5VCAu+G0aYvss/zbxeCcm9AAAAAAAAAAAzXqS9drXXPuBbmD5MwKW+HhALPsuZrD0AAAAAAAAAADOE970qoO0+AHZePouPsr7Mh8+8fUTsPQAAAAAAAAAAmqmoOpQIVz4Wk4M9O9iEvoX2fD373wa8AAAAAAAAAABmT4c8rp2FugUqtDbxyYkxjEj/OYq107UAAIA/AACAP42DyD3Eo7U/JlTxPvEhY74+pvo99EWOPgAAAAAAAAAAM58uvO1jWj9JbAg95LrZvgB/XT21vdk7AAAAAAAAAABGTSS+3WWjP98PF7/7R96+uaeHvgKFpb4AAAAAAAAAADO2v7x8q7Q/FllHv3pIj7x57LI8oLPfPQAAAAAAAAAAWpwKvgOtAj9unRI+l+C1viIbPb35KQU9AAAAAAAAAACao2U8uLb7ucPfFLaJkdovYW5mu4xxPzUAAIA/AACAPzP3sbuFh6Y8rmFEPYUjkr6s+hI9rkDwPAAAAAAAAAAAs74oPeG03rqq1ZU6IrGWPJCI+bv9MoI9AACAPwAAgD8AkPE7Ul2lPoraJb1kfae+/h5Pvc77Y7wAAAAAAAAAAAD4ajvhoJ66CEaLObXMgjRCAZm6hZeguAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+WRK6FuemMAWyUS+6MAXSUR0CcveqzqrzYdX2UKGgGR0ByDnFo+OfeaAdL8WgIR0Ccvg5HVf/ndX2UKGgGR0Bvl8OZssQNaAdL/mgIR0CcvhymQ8wIdX2UKGgGR0BuezHZK3/haAdNDQFoCEdAnL5KhQFcIXV9lChoBkdAb1VXFLnLaGgHS+9oCEdAnL906YE4enV9lChoBkdAcVV0fHPu5WgHTQEBaAhHQJy/e8qWkad1fZQoaAZHQG7JZCOWBz5oB0v7aAhHQJy/penhsIp1fZQoaAZHQHICzgZTAFhoB0vhaAhHQJzAl0Lc9GJ1fZQoaAZHQG9gdvsJIDpoB00CAWgIR0CcwJdk8RthdX2UKGgGR0Bw4jIyTINmaAdNDwFoCEdAnMCbqptJnXV9lChoBkdAcaHSCe2/jGgHTSsBaAhHQJzBCoybhFV1fZQoaAZHQG/oaRp1zQxoB00AAWgIR0CcwXxNqQA/dX2UKGgGR0BzNEvexfOVaAdNAAFoCEdAnMGqqGUOeHV9lChoBkdAcs0F72L5ymgHS/doCEdAnMGwRf4REnV9lChoBkdAcieRArxy4mgHS+RoCEdAnMHLcO9WZXV9lChoBkdAcbtwrUb1iGgHS/JoCEdAnMICOBDohnV9lChoBkdAct3hbW3BpGgHS+hoCEdAnMKbJ8v25HV9lChoBkdAcMwhgE2YOWgHS+1oCEdAnMLQ5myxA3V9lChoBkdAb5TadMCcPWgHTQYBaAhHQJzDWNFSbYt1fZQoaAZHQG+VkJBw++xoB00JAWgIR0Ccw5f8MuvmdX2UKGgGR0Bw9xiSaEzwaAdL5mgIR0CcxCwuuievdX2UKGgGR0BwMDYukDZEaAdL/GgIR0CcxHAvL5h0dX2UKGgGR0BwV2PvKEFoaAdNDAFoCEdAnMTDNY8uBnV9lChoBkdAcUtXEIgNgGgHS9poCEdAnMTTrRjSX3V9lChoBkdAczRXEIgNgGgHTQkBaAhHQJzF1LkCFK11fZQoaAZHQHD1ixFAmiRoB0v3aAhHQJzF4qNIbwV1fZQoaAZHQHE4Ai/wiJRoB00ZAWgIR0CcxjlolD4QdX2UKGgGR0BwqKrIYFaCaAdL6GgIR0Ccxm/Y8Md+dX2UKGgGR0BwJ0RdyDIzaAdL8mgIR0CcxoHzpX6qdX2UKGgGR0Bwjd4wAU+LaAdL/mgIR0CcxpPNVzZIdX2UKGgGR0By1rNC7btaaAdNAAFoCEdAnMbEOuq3mXV9lChoBkdAb4yw7DEWI2gHS/toCEdAnMcD6ab4J3V9lChoBkdAbXCnNxEORWgHS+ZoCEdAnMgfjjrAxnV9lChoBkdAcUUwzLwF1WgHTREBaAhHQJzIdHYpUgl1fZQoaAZHQHFqcchkiEBoB00fAWgIR0CcyIBqbjLkdX2UKGgGR0BuyjO/tY0VaAdL82gIR0CcyKZrYXfqdX2UKGgGR0Bwh4oDxLCfaAdL82gIR0Cc2U8QqZtvdX2UKGgGR0ByJD/1g6U8aAdL+GgIR0Cc2acMEzO5dX2UKGgGR0BvPJkkKNQ1aAdNFgFoCEdAnNmvJq7AcnV9lChoBkdAcj5MbWEsa2gHS/xoCEdAnNnNGNJe3XV9lChoBkdAcAoldTo+wGgHS/RoCEdAnNsWwFC9iHV9lChoBkdAcaPw0O3DvWgHS/JoCEdAnNsuTFERa3V9lChoBkdAcN0GhVU+92gHTQgBaAhHQJzbltdiUgV1fZQoaAZHQHJgGbTc6/9oB00nAWgIR0Cc26LcsUZfdX2UKGgGR0BzBF9Brvb5aAdNIAFoCEdAnNvOhCdBjXV9lChoBkdAc1OgTh5xBGgHTS4BaAhHQJzb0iosI3R1fZQoaAZHQG6anRCx/utoB00NAWgIR0Cc2/ZQYUFjdX2UKGgGR0BwgLOC5EtvaAdL62gIR0Cc3IIeo1k2dX2UKGgGR0BxIoFFDv3KaAdNJAFoCEdAnNyXocJdB3V9lChoBkdAcSD0btJFs2gHS+ZoCEdAnNy4OH31z3V9lChoBkdAcYm+GXXyy2gHS/9oCEdAnN1U9U0el3V9lChoBkdAc5rlnRLK3mgHTRwBaAhHQJzds2bXpW51fZQoaAZHQG3E5MURFqloB0vvaAhHQJzedLGrCFd1fZQoaAZHQHDjqkyk9EFoB00RAWgIR0Cc3pwFkhA4dX2UKGgGR0BwlIvXbuc+aAdNAgFoCEdAnN65BcAzYXV9lChoBkdAczeDYRNAT2gHTQ0BaAhHQJze7wlSjxl1fZQoaAZHQG1iM+NcW0toB0vsaAhHQJzfuB06o2p1fZQoaAZHQHH5wG4ZuQ9oB00HAWgIR0Cc4GJ1q33IdX2UKGgGR0BxI7lEJBw/aAdL92gIR0Cc4H0nPVurdX2UKGgGR0Bvrqt3fQ8faAdL+2gIR0Cc4Ikl/pdKdX2UKGgGR0ByLDo8p1A8aAdL8WgIR0Cc4JKlHjIadX2UKGgGR0Bvo2G/N7jUaAdL+WgIR0Cc4LfCQ9zPdX2UKGgGR0BxkjbO/tY0aAdNAgFoCEdAnOEEpNKywHV9lChoBkdAck3bm2b5M2gHS+NoCEdAnOFEIPbwjXV9lChoBkdAcm1+uvECNmgHS/loCEdAnOF0yxiXpnV9lChoBkdAcdY+VTrE+GgHS/RoCEdAnOF1NtZV43V9lChoBkdAcySHwPRRdmgHTQMBaAhHQJzibjhky1x1fZQoaAZHQHA3ouXeFcpoB0v3aAhHQJzikD0UXYV1fZQoaAZHQHAd/bsWweNoB0v2aAhHQJzjcUL2HtZ1fZQoaAZHQG+NRGc4HX5oB0vtaAhHQJzjk74i5d51fZQoaAZHQHE/64tpVS5oB00AAWgIR0Cc479gnc+JdX2UKGgGR0BwoNsoDxLCaAdNDQFoCEdAnOO/ldTo+3V9lChoBkdAcEOHYpUgjmgHS/RoCEdAnORud5IH1XV9lChoBkdAcPqT4tYjjmgHS+1oCEdAnOUiElE7XHV9lChoBkdAcAFld1MdtGgHS/poCEdAnOVLE9+w1XV9lChoBkdAcIGOuq3mWGgHS/NoCEdAnOV/+OwPiHV9lChoBkdAbj7mseXAumgHS/xoCEdAnOWJ08vEj3V9lChoBkdAcFBH7gsK9mgHTQYBaAhHQJzlrtw71Zl1fZQoaAZHQG+6V/lQuVZoB00EAWgIR0Cc5itNi6QOdX2UKGgGR0BxIfeVLSNPaAdL9GgIR0Cc5lczZYgadX2UKGgGR0ByGDj2i+L4aAdNEAFoCEdAnOa3cDbJwXV9lChoBkdAcSBlolD4QGgHTRkBaAhHQJznHALy+Yd1fZQoaAZHQG61ct5D7ZZoB00MAWgIR0Cc6BX05EMLdX2UKGgGR0ByXyNIbwSbaAdNBwFoCEdAnOghQSBbwHV9lChoBkdAcYOTho/RmmgHS+poCEdAnOhuz6ab4XV9lChoBkdAc6KU+LWI42gHS+ZoCEdAnOiwAlv603V9lChoBkdAb0mOy3Td+GgHS/toCEdAnOj39aUzK3V9lChoBkdAb+MPbO/tY2gHS/VoCEdAnOkItUXHinV9lChoBkdAcZOyULUkOmgHTQQBaAhHQJzqNpYcNpd1fZQoaAZHQHB4d7BwdbRoB0voaAhHQJzqSyX2M851fZQoaAZHQHNy0rf+CK9oB0vaaAhHQJzqT6WPcSJ1fZQoaAZHQHIeAqZtvXNoB00DAWgIR0Cc6vro4dZJdX2UKGgGR0BzqelvZRKpaAdNAAFoCEdAnOsmlZX+2nV9lChoBkdAcrBEeyRjjWgHS/1oCEdAnOs5xzaK13V9lChoBkdAbhQvmozeoGgHS+5oCEdAnOt2uTzNEHV9lChoBkdActZa/h2nsWgHS+toCEdAnOuVzU7SzHV9lChoBkdAbgAkgOjIrGgHS/toCEdAnOxJuVHFxXV9lChoBkdAcVa5ylvZRWgHTRsBaAhHQJztbDsMRYl1fZQoaAZHQG9ulmOEM9doB0v3aAhHQJztjtqpLmJ1fZQoaAZHQHDQPw/gR9RoB00FAWgIR0Cc7fNcGC7LdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |